Muutke küpsiste eelistusi

E-raamat: Classical and Discrete Differential Geometry: Theory, Applications and Algorithms

  • Formaat: 588 pages
  • Ilmumisaeg: 31-Jan-2023
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000804461
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 58,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 588 pages
  • Ilmumisaeg: 31-Jan-2023
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000804461
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book introduces differential geometry and cutting-edge findings from the discipline by incorporating both classical approaches and modern discrete differential geometry across all facets and applications, including graphics and imaging, physics and networks.



This book introduces differential geometry and cutting-edge findings from the discipline by incorporating both classical approaches and modern discrete differential geometry across all facets and applications, including graphics and imaging, physics and networks.

With curvature as the centerpiece, the authors present the development of differential geometry, from curves to surfaces, thence to higher dimensional manifolds; and from smooth structures to metric spaces, weighted manifolds and complexes, and to images, meshes and networks. The first part of the book is a differential geometric study of curves and surfaces in the Euclidean space, enhanced while the second part deals with higher dimensional manifolds centering on curvature by exploring the various ways of extending it to higher dimensional objects and more general structures and how to return to lower dimensional constructs. The third part focuses on computational algorithms in algebraic topology and conformal geometry, applicable for surface parameterization, shape registration and structured mesh generation.

The volume will be a useful reference for students of mathematics and computer science, as well as researchers and engineering professionals who are interested in graphics and imaging, complex networks, differential geometry and curvature.

Section I Differential Geometry, Classical and Discrete
1. Curves
2.
Surfaces: Gauss Curvature First Definition
3. Metrization of Gauss
Curvature
4. Gauss Curvature and Theorema Egregium
5. The Mean and Gauss
Curvature Flows
6. Geodesics
7. Geodesics and Curvature
8. The Equations of
Compatibility
9. The Gauss-Bonnet Theorem and the Poincare Index Theorem
10.
Higher Dimensional Curvatures
11. Higher Dimensional Curvatures
12. Discrete
Ricci Curvature and Flow
13. Weighted Manifolds and Ricci Curvature Revisited
Section II Differential Geometry, Computational Aspects
14. Algebraic
Topology
15. Homology and Cohomology Group
16. Exterior Calculus and Hodge
Decomposition
17. Harmonic Map
18. Riemann Surface
19. Conformal Mapping
20.
Discrete Surface Curvature Flows
21. Mesh Generation Based on Abel-Jacobi
Theorem Section III Appendices
22. Appendix A
23. Appendix B
24. Appendix C
David Xianfeng Gu is a SUNY Empire Innovation Professor of Computer Science and Applied Mathematics at State University of New York at Stony Brook, USA. His research interests focus on generalizing modern geometry theories to discrete settings and applying them in engineering and medical fields and recently on geometric views of optimal transportation theory. He is one of the major founders of an interdisciplinary field, Computational Conformal Geometry.

Emil Saucan is Associate Professor of Applied Mathematics at Braude College of Engineering, Israel. His main research interest is geometry in general (including Geometric Topology), especially Discrete and Metric Differential Geometry and their applications to Imaging and Geometric Design, as well as Geometric Modeling. His recent research focuses on various notions of discrete Ricci curvature and their practical applications.