Preface to the Second Edition for the Instructor |
|
xvii | |
Preface to the Second Edition for the Student |
|
xxi | |
Preface to the First Edition |
|
xxiii | |
1 Basic Ideas |
|
1 | (16) |
|
|
1 | (6) |
|
|
1 | (1) |
|
1.1.2 The Complex Numbers |
|
|
1 | (5) |
|
|
6 | (1) |
|
|
7 | (1) |
|
1.2 Algebraic and Geometric Properties |
|
|
7 | (10) |
|
1.2.1 Modulus of a Complex Number |
|
|
7 | (2) |
|
1.2.2 The Topology of the Complex Plane |
|
|
9 | (1) |
|
1.2.3 The Complex Numbers as a Field |
|
|
9 | (5) |
|
1.2.4 The Fundamental Theorem of Algebra |
|
|
14 | (1) |
|
|
15 | (2) |
2 The Exponential and Applications |
|
17 | (10) |
|
2.1 The Exponential Function |
|
|
17 | (10) |
|
2.1.1 Laws of Exponentiation |
|
|
19 | (1) |
|
2.1.2 The Polar Form of a Complex Number |
|
|
19 | (2) |
|
|
20 | (1) |
|
2.1.3 Roots of Complex Numbers |
|
|
21 | (2) |
|
2.1.4 The Argument of a Complex Number |
|
|
23 | (1) |
|
2.1.5 Fundamental Inequalities |
|
|
24 | (3) |
|
|
26 | (1) |
3 Holomorphic and Harmonic Functions |
|
27 | (18) |
|
3.1 Holomorphic Functions |
|
|
27 | (9) |
|
3.1.1 Continuously Differentiable and Ck Functions |
|
|
27 | (1) |
|
3.1.2 The Cauchy-Riemann Equations |
|
|
28 | (2) |
|
|
30 | (1) |
|
3.1.4 Definition of Holomorphic Function |
|
|
31 | (1) |
|
3.1.5 Examples of Holomorphic Functions |
|
|
31 | (1) |
|
3.1.6 The Complex Derivative |
|
|
32 | (2) |
|
3.1.7 Alternative Terminology for Holomorphic Functions |
|
|
34 | (1) |
|
|
34 | (2) |
|
3.2 Holomorphic and Harmonic Functions |
|
|
36 | (5) |
|
|
36 | (1) |
|
3.2.2 Holomorphic and Harmonic Functions |
|
|
37 | (3) |
|
|
40 | (1) |
|
3.3 Complex Differentiability |
|
|
41 | (4) |
|
|
41 | (2) |
|
|
43 | (2) |
4 The Cauchy Theory |
|
45 | (30) |
|
4.1 Real and Complex Line Integrals |
|
|
45 | (9) |
|
|
45 | (1) |
|
|
45 | (2) |
|
4.1.3 Differentiable and Ck Curves |
|
|
47 | (1) |
|
4.1.4 Integrals on Curves |
|
|
48 | (1) |
|
4.1.5 The Fundamental Theorem of Calculus along Curves |
|
|
48 | (1) |
|
4.1.6 The Complex Line Integral |
|
|
49 | (2) |
|
4.1.7 Properties of Integrals |
|
|
51 | (1) |
|
|
52 | (2) |
|
4.2 The Cauchy Integral Theorem |
|
|
54 | (15) |
|
4.2.1 The Cauchy Integral Theorem, Basic Form |
|
|
54 | (2) |
|
4.2.2 More General Forms of the Cauchy Theorem |
|
|
56 | (2) |
|
4.2.3 Deformability of Curves |
|
|
58 | (4) |
|
4.2.4 Cauchy Integral Formula, Basic Form |
|
|
62 | (2) |
|
4.2.5 More General Versions of the Cauchy Formula |
|
|
64 | (3) |
|
|
67 | (2) |
|
4.3 Variants of the Cauchy Formula |
|
|
69 | (4) |
|
4.4 The Limitations of the Cauchy Formula |
|
|
73 | (2) |
|
|
73 | (2) |
5 Applications of the Cauchy Theory |
|
75 | (20) |
|
5.1 The Derivatives of a Holomorphic Function |
|
|
75 | (12) |
|
5.1.1 A Formula for the Derivative |
|
|
76 | (1) |
|
5.1.2 The Cauchy Estimates |
|
|
76 | (2) |
|
5.1.3 Entire Functions and Liouville's Theorem |
|
|
78 | (1) |
|
5.1.4 The Fundamental Theorem of Algebra |
|
|
79 | (1) |
|
5.1.5 Sequences of Holomorphic Functions and Their Derivatives |
|
|
80 | (1) |
|
5.1.6 The Power Series Representation of a Holomorphic Function |
|
|
81 | (4) |
|
5.1.7 Table of Elementary Power Series |
|
|
85 | (1) |
|
|
86 | (1) |
|
5.2 The Zeros of a Holomorphic Function |
|
|
87 | (8) |
|
5.2.1 The Zero Set of a Holomorphic Function |
|
|
87 | (1) |
|
5.2.2 Discrete Sets and Zero Sets |
|
|
88 | (2) |
|
5.2.3 Uniqueness of Analytic Continuation |
|
|
90 | (3) |
|
|
93 | (2) |
6 Isolated Singularities |
|
95 | (14) |
|
6.1 Behavior Near an Isolated Singularity |
|
|
95 | (5) |
|
6.1.1 Isolated Singularities |
|
|
95 | (1) |
|
6.1.2 A Holomorphic Function on a Punctured Domain |
|
|
95 | (1) |
|
6.1.3 Classification of Singularities |
|
|
96 | (1) |
|
6.1.4 Removable Singularities, Poles, and Essential Singularities |
|
|
96 | (1) |
|
6.1.5 The Riemann Removable Singularities Theorem |
|
|
97 | (1) |
|
6.1.6 The Casorati-Weierstrass Theorem |
|
|
98 | (1) |
|
|
98 | (1) |
|
|
99 | (1) |
|
6.2 Expansion around Singular Points |
|
|
100 | (9) |
|
|
100 | (1) |
|
6.2.2 Convergence of a Doubly Infinite Series |
|
|
100 | (1) |
|
6.2.3 Annulus of Convergence |
|
|
101 | (1) |
|
6.2.4 Uniqueness of the Laurent Expansion |
|
|
102 | (1) |
|
6.2.5 The Cauchy Integral Formula for an Annulus |
|
|
102 | (1) |
|
6.2.6 Existence of Laurent Expansions |
|
|
102 | (3) |
|
6.2.7 Holomorphic Functions with Isolated Singularities |
|
|
105 | (1) |
|
6.2.8 Classification of Singularities in Terms of Laurent Series |
|
|
106 | (1) |
|
|
107 | (2) |
7 Meromorphic Functions |
|
109 | (12) |
|
7.1 Examples of Laurent Expansions |
|
|
109 | (5) |
|
7.1.1 Principal Part of a Function |
|
|
109 | (1) |
|
7.1.2 Algorithm for Calculating the Coefficients of the Laurent Expansion |
|
|
110 | (2) |
|
|
112 | (2) |
|
7.2 Meromorphic Functions |
|
|
114 | (7) |
|
7.2.1 Meromorphic Functions |
|
|
114 | (1) |
|
7.2.2 Discrete Sets and Isolated Points |
|
|
115 | (1) |
|
7.2.3 Definition of Meromorphic Function |
|
|
115 | (1) |
|
7.2.4 Examples of Meromorphic Functions |
|
|
115 | (1) |
|
7.2.5 Meromorphic Functions with Infinitely Many Poles |
|
|
116 | (1) |
|
7.2.6 Singularities at Infinity |
|
|
116 | (1) |
|
7.2.7 The Laurent Expansion at Infinity |
|
|
117 | (1) |
|
7.2.8 Meromorphic at Infinity |
|
|
118 | (1) |
|
7.2.9 Meromorphic Functions in the Extended Plane |
|
|
119 | (1) |
|
|
119 | (2) |
8 The Calculus of Residues |
|
121 | (30) |
|
|
121 | (12) |
|
8.1.1 Functions with Multiple Singularities |
|
|
121 | (1) |
|
8.1.2 The Concept of Residue |
|
|
122 | (1) |
|
8.1.3 The Residue Theorem |
|
|
123 | (1) |
|
|
123 | (2) |
|
8.1.5 The Index or Winding Number of a Curve about a Point |
|
|
125 | (2) |
|
8.1.6 Restatement of the Residue Theorem |
|
|
127 | (1) |
|
8.1.7 Method for Calculating Residues |
|
|
127 | (1) |
|
8.1.8 Summary Charts of Laurent Series and Residues |
|
|
127 | (2) |
|
|
129 | (4) |
|
8.2 Applications to the Calculation of Integrals |
|
|
133 | (18) |
|
8.2.1 The Evaluation of Definite Integrals |
|
|
133 | (1) |
|
|
133 | (3) |
|
8.2.3 Complexification of the Integrand |
|
|
136 | (1) |
|
8.2.4 An Example with a More Subtle Choice of Contour |
|
|
137 | (3) |
|
8.2.5 Making the Spurious Part of the Integral Disappear |
|
|
140 | (2) |
|
8.2.6 The Use of the Logarithm |
|
|
142 | (3) |
|
8.2.7 Summing a Series Using Residues |
|
|
145 | (1) |
|
8.2.8 Summary Chart of Some Integration Techniques |
|
|
145 | (3) |
|
|
148 | (3) |
9 The Argument Principle |
|
151 | (18) |
|
9.1 Counting Zeros and Poles |
|
|
151 | (8) |
|
9.1.1 Local Geometric Behavior of a Holomorphic Function |
|
|
151 | (1) |
|
9.1.2 Locating the Zeros of a Holomorphic Function |
|
|
151 | (1) |
|
|
152 | (1) |
|
9.1.4 Counting the Zeros of a Holomorphic Function |
|
|
153 | (1) |
|
9.1.5 The Argument Principle |
|
|
154 | (2) |
|
|
156 | (1) |
|
9.1.7 The Argument Principle for Meromorphic Functions |
|
|
157 | (1) |
|
|
157 | (2) |
|
9.2 Local Geometry of Functions |
|
|
159 | (5) |
|
9.2.1 The Open Mapping Theorem |
|
|
159 | (3) |
|
|
162 | (2) |
|
9.3 Further Results on Zeros |
|
|
164 | (5) |
|
|
164 | (1) |
|
9.3.2 A Typical Application of Rouche's Theorem |
|
|
165 | (1) |
|
9.3.3 Rouche's Theorem and the Fundamental Theorem of Algebra |
|
|
166 | (1) |
|
|
166 | (1) |
|
|
167 | (2) |
10 The Maximum Principle |
|
169 | (8) |
|
10.1 Local and Boundary Maxima |
|
|
169 | (3) |
|
10.1.1 The Maximum Modulus Principle |
|
|
169 | (1) |
|
10.1.2 Boundary Maximum Modulus Theorem |
|
|
170 | (1) |
|
10.1.3 The Minimum Principle |
|
|
170 | (1) |
|
10.1.4 The Maximum Principle on an Unbounded Domain |
|
|
171 | (1) |
|
|
171 | (1) |
|
|
172 | (5) |
|
|
172 | (1) |
|
10.2.2 The Schwarz-Pick Lemma |
|
|
173 | (1) |
|
|
174 | (3) |
11 The Geometric Theory |
|
177 | (30) |
|
11.1 The Idea of a Conformal Mapping |
|
|
177 | (2) |
|
11.1.1 Conformal Mappings |
|
|
177 | (1) |
|
11.1.2 Conformal Self-Maps of the Plane |
|
|
178 | (1) |
|
|
179 | (1) |
|
11.2 Mappings of the Disc |
|
|
179 | (3) |
|
11.2.1 Conformal Self-Maps of the Disc |
|
|
179 | (1) |
|
11.2.2 Mobius Transformations |
|
|
180 | (1) |
|
11.2.3 Self-Maps of the Disc |
|
|
180 | (1) |
|
|
181 | (1) |
|
11.3 Linear Fractional Transformations |
|
|
182 | (6) |
|
11.3.1 Linear Fractional Mappings |
|
|
182 | (1) |
|
11.3.2 The Topology of the Extended Plane |
|
|
183 | (1) |
|
11.3.3 The Riemann Sphere |
|
|
183 | (2) |
|
11.3.4 Conformal Self-Maps of the Riemann Sphere |
|
|
185 | (1) |
|
11.3.5 The Cayley Transform |
|
|
185 | (1) |
|
11.3.6 Generalized Circles and Lines |
|
|
186 | (1) |
|
11.3.7 The Cayley Transform Revisited |
|
|
186 | (1) |
|
11.3.8 Summary Chart of Linear Fractional Transformations |
|
|
187 | (1) |
|
|
187 | (1) |
|
11.4 The Riemann Mapping Theorem |
|
|
188 | (2) |
|
11.4.1 The Concept of Homeomorphism |
|
|
188 | (1) |
|
11.4.2 The Riemann Mapping Theorem |
|
|
188 | (1) |
|
11.4.3 The Riemann Mapping Theorem: Second Formulation |
|
|
189 | (1) |
|
|
189 | (1) |
|
11.5 Conformal Mappings of Annuli |
|
|
190 | (3) |
|
11.5.1 Conformal Mappings of Annuli |
|
|
190 | (1) |
|
11.5.2 Conformal Equivalence of Annuli |
|
|
190 | (1) |
|
11.5.3 Classification of Planar Domains |
|
|
191 | (1) |
|
|
191 | (2) |
|
11.6 A Compendium of Useful Conformal Mappings |
|
|
193 | (14) |
12 Applications of Conformal Mapping |
|
207 | (24) |
|
|
207 | (1) |
|
12.1.1 The Study of Conformal Mappings |
|
|
207 | (1) |
|
12.2 The Dirichlet Problem |
|
|
208 | (6) |
|
12.2.1 The Dirichlet Problem |
|
|
208 | (1) |
|
12.2.2 Physical Motivation for the Dirichlet Problem |
|
|
208 | (5) |
|
|
213 | (1) |
|
|
214 | (9) |
|
12.3.1 Steady-State Heat Distribution on a Lens-Shaped Region |
|
|
215 | (1) |
|
12.3.2 Electrostatics on a Disc |
|
|
216 | (2) |
|
12.3.3 Incompressible Fluid Flow around a Post |
|
|
218 | (4) |
|
|
222 | (1) |
|
12.4 Numerical Techniques |
|
|
223 | (8) |
|
12.4.1 Numerical Approximation of the Schwarz-Christoffel Mapping |
|
|
223 | (5) |
|
12.4.2 Numerical Approximation to a Mapping onto a Smooth Domain |
|
|
228 | (1) |
|
|
228 | (3) |
13 Harmonic Functions |
|
231 | (14) |
|
13.1 Basic Properties of Harmonic Functions |
|
|
231 | (4) |
|
13.1.1 The Laplace Equation |
|
|
231 | (1) |
|
13.1.2 Definition of Harmonic Function |
|
|
232 | (1) |
|
13.1.3 Real- and Complex-Valued Harmonic Functions |
|
|
232 | (1) |
|
13.1.4 Harmonic Functions as the Real Parts of Holomorphic Functions |
|
|
233 | (1) |
|
13.1.5 Smoothness of Harmonic Functions |
|
|
234 | (1) |
|
|
234 | (1) |
|
13.2 The Maximum Principle |
|
|
235 | (4) |
|
13.2.1 The Maximum Principle for Harmonic Functions |
|
|
235 | (1) |
|
13.2.2 The Minimum Principle for Harmonic Functions |
|
|
235 | (1) |
|
13.2.3 The Maximum Principle |
|
|
236 | (1) |
|
13.2.4 The Mean Value Property |
|
|
236 | (1) |
|
13.2.5 Boundary Uniqueness for Harmonic Functions |
|
|
237 | (1) |
|
|
238 | (1) |
|
13.3 The Poisson Integral Formula |
|
|
239 | (6) |
|
13.3.1 The Poisson Integral |
|
|
239 | (1) |
|
13.3.2 The Poisson Kernel |
|
|
239 | (1) |
|
13.3.3 The Dirichlet Problem |
|
|
239 | (1) |
|
13.3.4 The Solution of the Dirichlet Problem on the Disc |
|
|
240 | (1) |
|
13.3.5 The Dirichlet Problem on a General Disc |
|
|
241 | (1) |
|
|
242 | (3) |
14 The Fourier Theory |
|
245 | (28) |
|
|
245 | (12) |
|
|
245 | (2) |
|
14.1.2 A Remark on Intervals of Arbitrary Length |
|
|
247 | (1) |
|
14.1.3 Calculating Fourier Coefficients |
|
|
247 | (1) |
|
14.1.4 Calculating Fourier Coefficients Using Complex Analysis |
|
|
248 | (1) |
|
14.1.5 Steady-State Heat Distribution |
|
|
249 | (3) |
|
14.1.6 The Derivative and Fourier Series |
|
|
252 | (1) |
|
|
253 | (4) |
|
14.2 The Fourier Transform |
|
|
257 | (16) |
|
|
257 | (1) |
|
14.2.2 Some Fourier Transform Examples that Use Complex Variables |
|
|
258 | (10) |
|
14.2.3 Solving a Differential Equation Using the Fourier Transform |
|
|
268 | (2) |
|
|
270 | (3) |
15 Other Transforms |
|
273 | (10) |
|
15.1 The Laplace Transform |
|
|
273 | (4) |
|
|
273 | (1) |
|
15.1.2 Solving a Differential Equation Using the Laplace Transform |
|
|
274 | (1) |
|
|
275 | (2) |
|
|
277 | (6) |
|
|
277 | (1) |
|
15.2.2 Population Growth by Means of the Z-Transform |
|
|
277 | (3) |
|
|
280 | (3) |
16 Boundary Value Problems |
|
283 | (22) |
|
|
283 | (22) |
|
16.1.1 Remarks on Different Fourier Notations |
|
|
283 | (2) |
|
16.1.2 The Dirichlet Problem on the Disc |
|
|
285 | (4) |
|
16.1.3 The Poisson Integral |
|
|
289 | (3) |
|
|
292 | (5) |
|
|
297 | (8) |
Appendices |
|
305 | (2) |
Glossary |
|
307 | (26) |
List of Notation |
|
333 | (2) |
Table of Laplace Transforms |
|
335 | (2) |
A Guide to the Literature |
|
337 | (4) |
References |
|
341 | (4) |
Index |
|
345 | |