Muutke küpsiste eelistusi

E-raamat: Complex Variables: A Physical Approach with Applications

(Washington University, St. Louis, Missouri, USA)
  • Formaat: 377 pages
  • Sari: Textbooks in Mathematics
  • Ilmumisaeg: 16-Apr-2019
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781000007183
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 57,19 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 377 pages
  • Sari: Textbooks in Mathematics
  • Ilmumisaeg: 16-Apr-2019
  • Kirjastus: Chapman & Hall/CRC
  • Keel: eng
  • ISBN-13: 9781000007183
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Complex Variables: A Physical Approach with Applications, Second Edition offers a notable revision. The emphasis remains on theory and practice. The first part of the text focuses on the fundamental concepts. The author then moves on to a detailed look at how complex variables are used in the real world.



The idea of complex numbers dates back at least 300 years—to Gauss and Euler, among others. Today complex analysis is a central part of modern analytical thinking. It is used in engineering, physics, mathematics, astrophysics, and many other fields. It provides powerful tools for doing mathematical analysis, and often yields pleasing and unanticipated answers.



This book makes the subject of complex analysis accessible to a broad audience. The complex numbers are a somewhat mysterious number system that seems to come out of the blue. It is important for students to see that this is really a very concrete set of objects that has very concrete and meaningful applications.





    Features:









    • This new edition is a substantial rewrite, focusing on the accessibility, applied, and visual aspect of complex analysis




    • This book has an exceptionally large number of examples and a large number of figures.






    • The topic is presented as a natural outgrowth of the calculus. It is not a new language, or a new way of thinking.






    • Incisive applications appear throughout the book.






    • Partial differential equations are used as a unifying theme.






    Basic Ideas



    The Exponential and Applications



    Holomorphic and Harmonic Functions



    The Cauchy Theory



    Applications of the Cauchy Theory



    Isolated Singularities



    Meromorphic Functions



    The Calculus of Residues



    The Argument Principle



    The Maximum Principle



    The Geometric Theory



    Applications of Conformal Mapping



    Harmonic Functions



    The Fourier Theory



    Other Transforms



    Boundary Value Problems
    Steven G. Krantz is a professor of mathematics at Washington University in St. Louis. He has previously taught at UCLA, Princeton University, and Pennsylvania State University. He has written more than 130 books and more than 250 scholarly papers and is the founding editor of the Journal of Geometric Analysis. An AMS Fellow, Dr. Krantz has been a recipient of the Chauvenet Prize, Beckenbach Book Award, and Kemper Prize. He received a Ph.D. from Princeton University.