Muutke küpsiste eelistusi

E-raamat: EMI Filter Design 3rd edition [Taylor & Francis e-raamat]

(Rockwell Collins, Cedar Rapids, Iowa, USA), (Consultant, Checotah, Oklahoma, USA)
  • Formaat: 272 pages, 10 Tables, black and white; 148 Illustrations, black and white
  • Ilmumisaeg: 29-Mar-2017
  • Kirjastus: CRC Press
  • ISBN-13: 9781315217116
  • Taylor & Francis e-raamat
  • Hind: 387,76 €*
  • * hind, mis tagab piiramatu üheaegsete kasutajate arvuga ligipääsu piiramatuks ajaks
  • Tavahind: 553,94 €
  • Säästad 30%
  • Formaat: 272 pages, 10 Tables, black and white; 148 Illustrations, black and white
  • Ilmumisaeg: 29-Mar-2017
  • Kirjastus: CRC Press
  • ISBN-13: 9781315217116

With today’s electrical and electronics systems requiring increased levels of performance and reliability, the design of robust EMI filters plays a critical role in EMC compliance. Using a mix of practical methods and theoretical analysis, EMI Filter Design, Third Edition presents both a hands-on and academic approach to the design of EMI filters and the selection of components values. The design approaches covered include matrix methods using table data and the use of Fourier analysis, Laplace transforms, and transfer function realization of LC structures. This edition has been fully revised and updated with additional topics and more streamlined content.

New to the Third Edition

  • Analysis techniques necessary for passive filter realization
  • Matrix method and transfer function analysis approaches for LC filter structure design
  • A more hands-on look at EMI filters and the overall design process

Through this bestselling book’s proven design methodology and practical application of formal techniques, readers learn how to develop simple filter solutions. The authors examine the causes of common- and differential-mode noise and methods of elimination, the source and load impedances for various types of input power interfaces, and the load impedance aspect of EMI filter design. After covering EMI filter structures, topologies, and components, they provide insight into the sizing of components and protection from voltage transients, discuss issues that compromise filter performance, and present a goal for a filter design objective. The text also includes a matrix method for filter design, explains the transfer function method of LC structures and their equivalent polynomials, and gives a circuit design example and analysis techniques. The final chapter presents packaging solutions of EMI filters.

EMI Filters. Why Call EMI Filters Black Magic? Common Mode and
Differential Mode: Definition, Cause, and Elimination. EMI Filter Source
Impedance of Various Power Lines. The Various AC Load Impedances. DC
CircuitLoad and Source. Typical EMI FiltersPros and Cons. Filter
Componentsthe Capacitor. Filter Componentsthe Inductor. Common-Mode
Components. The Transformers Addition to the EMI Filter. Electromagnetic
Pulse and Voltage Transients. What Will Compromise the Filter? Waves as Noise
Sources. Initial Filter Design Requirements. Matrices, Transfer Functions,
and Insertion Loss. Matrix Applications: A Continuation of
Chapter
16.
Network Analysis of Passive LC Structures. Filter Design Techniques and
Design Examples. Packaging Information. Appendices. Index.
Richard Lee Ozenbaugh is a consultant of EMI filter design and magnetics engineering for such companies as Hughes Aircraft Corporation, Parker Hannifin Aerospace, Franklin Electric, McDonnell Douglas, and Cirrus Logic. Involved in the electrical and electronics industries since the early 1950s, he has worked as a radar specialist for the U.S. Navy as well as an engineer for Hopkins Engineering and RFI Corporation.

Timothy M. Pullen is a principal electrical engineer at Rockwell Collins. He has over 25 years of experience in the research, design, and development of electronic systems for commercial and military applications, including power electronics, motor control, and full authority digital engine control technology. His areas of expertise include model-based design and control, analog circuit design, and filter design.