Preface |
|
xiii | |
Acknowledgments |
|
xv | |
Author |
|
xvii | |
|
|
1 | (16) |
|
|
1 | (2) |
|
|
3 | (1) |
|
1.3 Probability Density Function |
|
|
3 | (4) |
|
1.3.1 PDF of Brownian Motion |
|
|
4 | (1) |
|
1.3.2 Gaussian Distribution |
|
|
5 | (1) |
|
1.3.3 Poisson Distribution |
|
|
5 | (1) |
|
1.3.4 Cauchy Distribution |
|
|
6 | (1) |
|
1.4 Correlation Functions |
|
|
7 | (5) |
|
1.4.1 Auto-Correlation Functions |
|
|
7 | (2) |
|
1.4.2 Auto-Covariance Functions |
|
|
9 | (1) |
|
1.4.3 Cross-Correlation Functions |
|
|
10 | (1) |
|
1.4.4 Cross-Covariance Functions |
|
|
11 | (1) |
|
|
12 | (2) |
|
1.5.1 Power Auto-Spectrum Density Functions |
|
|
12 | (1) |
|
1.5.2 Power Cross-Spectrum Density Functions |
|
|
13 | (1) |
|
|
14 | (1) |
|
1.7 Random Functions of Interest in Traffic Theory |
|
|
14 | (3) |
|
|
15 | (2) |
|
Chapter 2 Fourier Transform |
|
|
17 | (32) |
|
2.1 Basic in Fourier Transform |
|
|
17 | (4) |
|
|
21 | (8) |
|
2.3 Nascent Delta Functions |
|
|
29 | (1) |
|
2.4 Basic Properties of Fourier Transform |
|
|
30 | (12) |
|
|
42 | (7) |
|
|
47 | (2) |
|
Chapter 3 Applied Functional |
|
|
49 | (26) |
|
|
49 | (3) |
|
3.1.1 Notion of Linear Spaces |
|
|
49 | (1) |
|
3.1.2 Isomorphism of Linear Spaces |
|
|
50 | (1) |
|
3.1.3 Subspaces and Affine Manifold |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
52 | (4) |
|
3.2.1 Concept of Metric Spaces |
|
|
52 | (2) |
|
3.2.2 Limit in Metric Spaces |
|
|
54 | (1) |
|
3.2.3 Balls Viewed from Metric Spaces |
|
|
54 | (2) |
|
|
56 | (1) |
|
|
56 | (5) |
|
3.3.1 Notion of Norm and Normed Spaces |
|
|
56 | (1) |
|
|
57 | (2) |
|
3.3.3 Equivalence of Norms |
|
|
59 | (2) |
|
3.3.4 Equivalence of Linear Normed Spaces |
|
|
61 | (1) |
|
|
61 | (5) |
|
3.4.1 Concept of Banach Spaces |
|
|
61 | (1) |
|
|
62 | (1) |
|
3.4.3 Series in Banach Spaces |
|
|
63 | (1) |
|
3.4.4 Separable Banach Spaces and Completion of Spaces |
|
|
64 | (2) |
|
|
66 | (5) |
|
3.5.1 Inner Product Spaces |
|
|
66 | (1) |
|
3.5.1.1 Concept of Inner Product Spaces |
|
|
66 | (2) |
|
|
68 | (1) |
|
|
68 | (1) |
|
|
69 | (2) |
|
3.6 Bounded Linear Operators |
|
|
71 | (4) |
|
|
73 | (2) |
|
Chapter 4 Min-Plus Convolution |
|
|
75 | (20) |
|
4.1 Conventional Convolution |
|
|
75 | (7) |
|
|
82 | (3) |
|
4.3 Identity in the Min-Plus Convolution |
|
|
85 | (1) |
|
|
85 | (2) |
|
4.5 Existence of Min-Plus De-Convolution |
|
|
87 | (4) |
|
|
87 | (2) |
|
|
89 | (2) |
|
4.6 The Condition of the Existence Of Min-Plus De-Convolution |
|
|
91 | (1) |
|
4.7 Representation of the Identity In Min-Plus Convolution |
|
|
91 | (4) |
|
|
93 | (2) |
|
Chapter 5 Noise and Systems of Fractional Order |
|
|
95 | (14) |
|
5.1 Derivatives and Integrals of Fractional Order |
|
|
95 | (5) |
|
5.2 Mikusinski Operator of Fractional Order |
|
|
100 | (1) |
|
5.3 Fractional Derivatives: A Convolution View |
|
|
101 | (2) |
|
5.4 Fractional Order Delta Function |
|
|
103 | (1) |
|
5.5 Linear Systems Driven By Fractional Noise |
|
|
104 | (1) |
|
5.6 Fractional Systems Driven By Non-Fractional Noise |
|
|
104 | (1) |
|
5.7 Fractional Systems Driven By Fractional Noise |
|
|
105 | (4) |
|
|
105 | (4) |
|
Chapter 6 Fractional Gaussian Noise and Traffic Modeling |
|
|
109 | (18) |
|
6.1 Fractional Gaussian Noise |
|
|
109 | (3) |
|
6.2 Fractional Gaussian Noise In Traffic Modeling |
|
|
112 | (7) |
|
6.3 Approximation Of The Acf Of Fractional Gaussian Noise |
|
|
119 | (2) |
|
6.4 Fractal Dimension Of Fractional Gaussian Noise |
|
|
121 | (2) |
|
|
123 | (4) |
|
|
124 | (3) |
|
Chapter 7 Generalized Fractional Gaussian Noise and Traffic Modeling |
|
|
127 | (18) |
|
7.1 Generalized Fractional Gaussian Noise |
|
|
128 | (4) |
|
7.2 Traffic Modeling Using Generalized Fractional Gaussian Noise |
|
|
132 | (10) |
|
7.3 Approximation Of The Acf Of Generalized Fractional Gaussian Noise |
|
|
142 | (1) |
|
7.4 Fractal Dimension Of Generalized Fractional Gaussian Noise |
|
|
143 | (2) |
|
|
144 | (1) |
|
Chapter 8 Generalized Cauchy Process and Traffic Modeling |
|
|
145 | (20) |
|
8.1 Meaning Of Generalized Cauchy Process In The Book |
|
|
146 | (1) |
|
|
147 | (1) |
|
|
147 | (5) |
|
8.4 Traffic Modeling Using The GC Process |
|
|
152 | (13) |
|
|
162 | (3) |
|
Chapter 9 Traffic Bound of Generalized Cauchy Type |
|
|
165 | (12) |
|
9.1 Problem Statements and Research Aim |
|
|
166 | (2) |
|
9.2 Upper Bound of the Generalized Cauchy Process |
|
|
168 | (4) |
|
|
172 | (5) |
|
|
174 | (3) |
|
Chapter 10 Fractal Traffic Delay Bounds |
|
|
177 | (12) |
|
|
177 | (5) |
|
10.2 Fractal Delay Bounds |
|
|
182 | (2) |
|
10.2.1 Fractal Delay Bound 1 |
|
|
182 | (1) |
|
10.2.2 Fractal Delay Bound 2 |
|
|
182 | (1) |
|
10.2.3 Fractal Delay Bound 3 |
|
|
183 | (1) |
|
10.2.4 Fractal Delay Bound 4 |
|
|
183 | (1) |
|
|
184 | (5) |
|
|
185 | (4) |
|
Chapter 11 Computations of Scale Factors |
|
|
189 | (22) |
|
|
189 | (4) |
|
|
193 | (2) |
|
11.3 Research Thoughts For Problem Solving |
|
|
195 | (1) |
|
|
195 | (1) |
|
|
195 | (1) |
|
|
195 | (5) |
|
11.4.1 Computation Formulas of r and a |
|
|
195 | (3) |
|
11.4.2 Asymptotic Computation Formulas of r and a |
|
|
198 | (2) |
|
|
200 | (2) |
|
|
200 | (1) |
|
11.5.2 Computations of r0min and a-1∞min of Traffic Traces |
|
|
200 | (1) |
|
11.5.2.1 Computations of σ and ρ of Traffic Traces |
|
|
201 | (1) |
|
11.5.2.2 Values of r0min and a-1∞min of Traffic Traces |
|
|
201 | (1) |
|
|
202 | (4) |
|
11.6.1 Physical Meaning of Asymptotic Scale Factors |
|
|
202 | (1) |
|
|
202 | (1) |
|
11.6.2.1 Approximations of Traffic Bound |
|
|
202 | (1) |
|
11.6.2.2 Applications to Fractal Delay Bounds |
|
|
203 | (3) |
|
|
206 | (5) |
|
|
206 | (5) |
|
|
211 | (6) |
|
12.1 Local Versus Global Of Fractal Time Series |
|
|
211 | (2) |
|
12.2 Local Versus Global Of Traffic Time Series |
|
|
213 | (1) |
|
|
213 | (4) |
|
|
214 | (3) |
Index |
|
217 | |