Muutke küpsiste eelistusi

E-raamat: Fractal Teletraffic Modeling and Delay Bounds in Computer Communications

  • Formaat: 238 pages
  • Ilmumisaeg: 02-May-2022
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000547993
  • Formaat - EPUB+DRM
  • Hind: 58,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 238 pages
  • Ilmumisaeg: 02-May-2022
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9781000547993

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

By deploying time series analysis, Fourier transform, functional analysis, min-plus convolution, and fractional order systems and noise, this book proposes fractal traffic modeling and computations of delay bounds, aiming to improve the quality of service in computer communication networks.

By deploying time series analysis, Fourier transform, functional analysis, min-plus convolution, and fractional order systems and noise, this book proposes fractal traffic modeling and computations of delay bounds, aiming to improve the quality of service in computer communication networks.

As opposed to traditional studies of teletraffic delay bounds, the author proposes a novel fractional noise, the generalized fractional Gaussian noise (gfGn) approach, and introduces a new fractional noise, generalized Cauchy (GC) process for traffic modeling.

Researchers and graduates in computer science, applied statistics, and applied mathematics will find this book beneficial.

Ming Li, PhD

, is a professor at Ocean College, Zhejiang University, and the East China Normal University. He has been an active contributor for many years to the fields of computer communications, applied mathematics and statistics, particularly network traffic modeling, fractal time series, and fractional oscillations. He has authored more than 200 articles and 5 monographs on the subjects. He was identified as the Most Cited Chinese Researcher by Elsevier in 2014–2020. Professor Li was recognized as a top 100,000 scholar in all fields in 2019–2020 and a top 2% scholar in the field of Numerical and Computational Mathematics in 2021 by Prof. John P. A. Ioannidis, Stanford University.

1. Time series 
2. Fourier transform  3. Applied Functional 
4. Min-plus
convolution 
5. Noise and systems of fractional order 
6. Fractional Gaussian
noise and traffic modeling 
7. Generalized fractional Gaussian noise and
traffic modeling 
8. Generalized Cauchy process and traffic modeling  9.
Traffic bound of generalized Cauchy type  10. Fractal traffic delay bounds
 11. Computations of scale factors  12. Postscript
Ming Li, PhD, is a professor at Ocean College, Zhejiang University, as well as at the East China Normal University. He has been an active contributor for many years to the fields of computer communications, applied mathematics and statistics,particularly network traffic modeling, fractal time series, and fractional oscillations. He has authored more than 200 articles and 5 monographs on the subjects. He was identified as the Most Cited Chinese Researcher by Elsevier in 20142020. Professor Li was recognized as a top 100,000 scholar in all fields in 20192020 and a top 2% scholar in the field of Numerical and Computational Mathematics in 2021 by Prof. John P. A. Ioannidis, Stanford University. (https://orcid.org/my-orcid?orcid=0000-0002-2725-353X)