Preface |
|
xi | |
Acknowledgements |
|
xvii | |
|
|
1 | (8) |
|
|
1 | (3) |
|
|
1 | (2) |
|
|
3 | (1) |
|
|
4 | (5) |
|
|
8 | (1) |
|
2 Review on Statistical Analysis and Probability Theory |
|
|
9 | (30) |
|
|
9 | (1) |
|
2.2 Displaying Data with Graphs |
|
|
10 | (3) |
|
|
10 | (3) |
|
2.3 Describing Data with Numbers |
|
|
13 | (3) |
|
2.3.1 Measuring the Center |
|
|
13 | (1) |
|
2.3.2 Measuring the Spread |
|
|
14 | (1) |
|
2.3.3 Standard Deviation and Variance |
|
|
14 | (1) |
|
2.3.4 Properties of the Standard Deviation |
|
|
15 | (1) |
|
2.3.5 Quantiles and the QQ Plot |
|
|
15 | (1) |
|
|
16 | (5) |
|
|
16 | (1) |
|
2.4.2 Sample Space, Event, Outcomes |
|
|
17 | (1) |
|
2.4.3 Conditional Probability |
|
|
18 | (1) |
|
|
19 | (2) |
|
|
21 | (12) |
|
2.5.1 Discrete Random Variables |
|
|
21 | (1) |
|
2.5.2 Continuous Random Variables |
|
|
21 | (1) |
|
2.5.2.1 Probability Density Function (pdf) |
|
|
21 | (1) |
|
2.5.2.2 Cumulative Distribution Function |
|
|
22 | (1) |
|
2.5.3 Expectation and Variance |
|
|
23 | (1) |
|
|
23 | (1) |
|
2.5.3.2 Population Variance |
|
|
24 | (1) |
|
2.5.4 Examples of Distribution Functions |
|
|
24 | (1) |
|
2.5.4.1 The Gaussian (Normal) Random Variable and Distribution |
|
|
24 | (1) |
|
2.5.4.2 Bernoulli Random Variable |
|
|
25 | (1) |
|
2.5.4.3 Uniform Random Variable |
|
|
26 | (1) |
|
2.5.4.4 A Poisson Random Variable |
|
|
26 | (1) |
|
2.5.4.5 The Lognormal Distribution |
|
|
27 | (1) |
|
2.5.5 The Empirical Distribution Function versus the Distribution Model |
|
|
28 | (1) |
|
2.5.6 Constructing a Distribution Function from Data |
|
|
29 | (1) |
|
2.5.7 Monte Carlo Simulation |
|
|
30 | (2) |
|
2.5.8 Data Transformations |
|
|
32 | (1) |
|
2.6 Bivariate Data Analysis |
|
|
33 | (6) |
|
|
33 | (1) |
|
2.6.2 Graphical Methods: Scatter plots |
|
|
33 | (2) |
|
2.6.3 Data Summary: Correlation (Coefficient) |
|
|
35 | (1) |
|
|
35 | (2) |
|
|
37 | (1) |
|
|
37 | (2) |
|
3 Modeling Uncertainty: Concepts and Philosophies |
|
|
39 | (16) |
|
|
39 | (1) |
|
3.2 Sources of Uncertainty |
|
|
40 | (1) |
|
3.3 Deterministic Modeling |
|
|
41 | (2) |
|
3.4 Models of Uncertainty |
|
|
43 | (1) |
|
3.5 Model and Data Relationship |
|
|
44 | (1) |
|
3.6 Bayesian View on Uncertainty |
|
|
45 | (3) |
|
3.7 Model Verification and Falsification |
|
|
48 | (1) |
|
|
49 | (1) |
|
3.9 Talking about Uncertainty |
|
|
50 | (1) |
|
|
51 | (4) |
|
|
51 | (1) |
|
|
51 | (1) |
|
3.10.1.2 Creating Data Sets Using Models |
|
|
51 | (1) |
|
3.10.1.3 Parameterization of Subgrid Variability |
|
|
52 | (1) |
|
3.10.1.4 Model Complexity |
|
|
52 | (1) |
|
3.10.2 Reservoir Modeling |
|
|
52 | (1) |
|
|
52 | (1) |
|
3.10.2.2 Creating Data Sets Using Models |
|
|
53 | (1) |
|
3.10.2.3 Parameterization of Subgrid Variability |
|
|
53 | (1) |
|
3.10.2.4 Model Complexity |
|
|
54 | (1) |
|
|
54 | (1) |
|
4 Engineering the Earth: Making Decisions Under Uncertainty |
|
|
55 | (22) |
|
|
55 | (2) |
|
|
57 | (13) |
|
|
57 | (2) |
|
4.2.2 The Language of Decision Making |
|
|
59 | (1) |
|
4.2.3 Structuring the Decision |
|
|
60 | (1) |
|
4.2.4 Modeling the Decision |
|
|
61 | (1) |
|
4.2.4.1 Payoffs and Value Functions |
|
|
62 | (1) |
|
|
63 | (2) |
|
|
65 | (2) |
|
4.2.4.4 Sensitivity Analysis |
|
|
67 | (3) |
|
4.3 Tools for Structuring Decision Problems |
|
|
70 | (7) |
|
|
70 | (1) |
|
4.3.2 Building Decision Trees |
|
|
70 | (2) |
|
4.3.3 Solving Decision Trees |
|
|
72 | (4) |
|
4.3.4 Sensitivity Analysis |
|
|
76 | (1) |
|
|
76 | (1) |
|
5 Modeling Spatial Continuity |
|
|
77 | (16) |
|
|
77 | (2) |
|
|
79 | (8) |
|
5.2.1 Autocorrelation in 1D |
|
|
79 | (3) |
|
5.2.2 Autocorrelation in 2D and 3D |
|
|
82 | (2) |
|
5.2.3 The Variogram and Covariance Function |
|
|
84 | (2) |
|
|
86 | (1) |
|
|
86 | (1) |
|
5.2.4.2 What is the Practical Meaning of a Variogram? |
|
|
87 | (1) |
|
5.2.5 A Word on Variogram Modeling |
|
|
87 | (1) |
|
5.3 The Boolean or Object Model |
|
|
87 | (3) |
|
|
87 | (2) |
|
|
89 | (1) |
|
5.4 3D Training Image Models |
|
|
90 | (3) |
|
|
92 | (1) |
|
6 Modeling Spatial Uncertainty |
|
|
93 | (14) |
|
|
93 | (1) |
|
6.2 Object-Based Simulation |
|
|
94 | (2) |
|
6.3 Training Image Methods |
|
|
96 | (4) |
|
6.3.1 Principle of Sequential Simulation |
|
|
96 | (2) |
|
6.3.2 Sequential Simulation Based on Training Images |
|
|
98 | (1) |
|
6.3.3 Example of a 3D Earth Model |
|
|
99 | (1) |
|
6.4 Variogram-Based Methods |
|
|
100 | (7) |
|
|
100 | (1) |
|
|
101 | (1) |
|
6.4.3 Inverse Square Distance |
|
|
102 | (1) |
|
|
103 | (1) |
|
6.4.5 The Kriging Variance |
|
|
104 | (1) |
|
6.4.6 Sequential Gaussian Simulation |
|
|
104 | (1) |
|
6.4.6.1 Kriging to Create a Model of Uncertainty |
|
|
104 | (1) |
|
6.4.6.2 Using Kriging to Perform (Sequential) Gaussian Simulation |
|
|
104 | (2) |
|
|
106 | (1) |
|
7 Constraining Spatial Models of Uncertainty with Data |
|
|
107 | (26) |
|
|
107 | (1) |
|
7.2 Probability-Based Approaches |
|
|
108 | (6) |
|
|
108 | (1) |
|
7.2.2 Calibration of Information Content |
|
|
109 | (1) |
|
7.2.3 Integrating Information Content |
|
|
110 | (3) |
|
7.2.4 Application to Modeling Spatial Uncertainty |
|
|
113 | (1) |
|
7.3 Variogram-Based Approaches |
|
|
114 | (2) |
|
7.4 Inverse Modeling Approaches |
|
|
116 | (17) |
|
|
116 | (2) |
|
7.4.2 The Role of Bayes' Rule in Inverse Model Solutions |
|
|
118 | (7) |
|
|
125 | (1) |
|
7.4.3.1 Rejection Sampling |
|
|
125 | (3) |
|
7.4.3.2 Metropolis Sampler |
|
|
128 | (2) |
|
7.4.4 Optimization Methods |
|
|
130 | (1) |
|
|
131 | (2) |
|
8 Modeling Structural Uncertainty |
|
|
133 | (20) |
|
|
133 | (2) |
|
8.2 Data for Structural Modeling in the Subsurface |
|
|
135 | (1) |
|
8.3 Modeling a Geological Surface |
|
|
136 | (2) |
|
8.4 Constructing a Structural Model |
|
|
138 | (3) |
|
8.4.1 Geological Constraints and Consistency |
|
|
138 | (2) |
|
8.4.2 Building the Structural Model |
|
|
140 | (1) |
|
8.5 Gridding the Structural Model |
|
|
141 | (3) |
|
8.5.1 Stratigraphic Grids |
|
|
141 | (1) |
|
|
142 | (2) |
|
8.6 Modeling Surfaces through Thicknesses |
|
|
144 | (1) |
|
8.7 Modeling Structural Uncertainty |
|
|
144 | (9) |
|
8.7.1 Sources of Uncertainty |
|
|
146 | (3) |
|
8.7.2 Models of Structural Uncertainty |
|
|
149 | (2) |
|
|
151 | (2) |
|
9 Visualizing Uncertainty |
|
|
153 | (18) |
|
|
153 | (1) |
|
9.2 The Concept of Distance |
|
|
154 | (2) |
|
9.3 Visualizing Uncertainty |
|
|
156 | (15) |
|
9.3.1 Distances, Metric Space and Multidimensional Scaling |
|
|
156 | (6) |
|
9.3.2 Determining the Dimension of Projection |
|
|
162 | (1) |
|
9.3.3 Kernels and Feature Space |
|
|
163 | (3) |
|
9.3.4 Visualizing the Data-Model Relationship |
|
|
166 | (4) |
|
|
170 | (1) |
|
10 Modeling Response Uncertainty |
|
|
171 | (22) |
|
|
171 | (1) |
|
10.2 Surrogate Models and Ranking |
|
|
172 | (1) |
|
10.3 Experimental Design and Response Surface Analysis |
|
|
173 | (8) |
|
|
173 | (1) |
|
10.3.2 The Design of Experiments |
|
|
173 | (3) |
|
10.3.3 Response Surface Designs |
|
|
176 | (1) |
|
10.3.4 Simple Illustrative Example |
|
|
177 | (2) |
|
|
179 | (2) |
|
10.4 Distance Methods for Modeling Response Uncertainty |
|
|
181 | (12) |
|
|
181 | (1) |
|
10.4.2 Earth Model Selection by Clustering |
|
|
182 | (1) |
|
|
182 | (1) |
|
10.4.2.2 k-Means Clustering |
|
|
183 | (2) |
|
10.4.2.3 Clustering of Earth Models for Response Uncertainty Evaluation |
|
|
185 | (1) |
|
10.4.3 Oil Reservoir Case Study |
|
|
186 | (2) |
|
10.4.4 Sensitivity Analysis |
|
|
188 | (3) |
|
|
191 | (1) |
|
|
191 | (2) |
|
|
193 | (22) |
|
|
193 | (1) |
|
11.2 The Value of Information Problem |
|
|
194 | (21) |
|
|
194 | (1) |
|
11.2.2 Reliability versus Information Content |
|
|
195 | (1) |
|
11.2.3 Summary of the VOI Methodology |
|
|
196 | (1) |
|
11.2.3.1 Steps 1 and 2: VOI Decision Tree |
|
|
197 | (1) |
|
11.2.3.2 Steps 3 and 4: Value of Perfect Information |
|
|
198 | (3) |
|
11.2.3.3 Step 5: Value of Imperfect Information |
|
|
201 | (1) |
|
11.2.4 Value of Information for Earth Modeling Problems |
|
|
202 | (1) |
|
|
202 | (1) |
|
11.2.6 Value of Information Calculation |
|
|
203 | (5) |
|
11.2.7 Example Case Study |
|
|
208 | (1) |
|
|
208 | (1) |
|
|
208 | (1) |
|
11.2.7.3 Decision Problem |
|
|
209 | (1) |
|
11.2.7.4 The Possible Data Sources |
|
|
210 | (1) |
|
11.2.7.5 Data Interpretation |
|
|
211 | (2) |
|
|
213 | (2) |
|
|
215 | (10) |
|
|
215 | (3) |
|
12.1.1 General Description |
|
|
215 | (3) |
|
12.1.2 Contaminant Transport |
|
|
218 | (1) |
|
|
218 | (1) |
|
|
218 | (3) |
|
12.2.1 Solving the Decision Problem |
|
|
218 | (1) |
|
|
219 | (1) |
|
12.2.2.1 Buying Geological Information |
|
|
219 | (2) |
|
12.2.2.2 Buying Geophysical Information |
|
|
221 | (1) |
|
12.3 Sensitivity Analysis |
|
|
221 | (4) |
Index |
|
225 | |