Volume 1: Preface |
|
xxv | |
I Herbicides |
|
1 | (2) |
Overview |
|
3 | (2) |
|
|
1 Herbicide Resistance Action Committee (HRAC): Herbicide Classification, Resistance Evolution, Survey, and Resistance Mitigation Activities |
|
|
5 | (28) |
|
|
|
|
|
5 | (2) |
|
1.2 HRAC Herbicide Classification System |
|
|
7 | (3) |
|
1.3 Herbicide Resistance Survey |
|
|
10 | (18) |
|
1.3.1 Herbicide Resistance Definition |
|
|
10 | (1) |
|
1.3.2 Herbicide Resistance Population Evolution and Integrated Weed Management |
|
|
10 | (4) |
|
1.3.3 Herbicide Resistance Mechanisms |
|
|
14 | (1) |
|
1.3.3.1 Target-site Resistance |
|
|
14 | (1) |
|
1.3.3.1.1 Inhibitors of Photosystem II (PS II) |
|
|
15 | (1) |
|
1.3.3.1.2 Inhibitors of Acetyl-CoA Carboxylase (ACCase, EC 6.4.1.2) |
|
|
15 | (3) |
|
1.3.3.1.3 Inhibitors of Acetolactate Synthase (ALS/AHAS, EC 2.2.1.6) |
|
|
18 | (2) |
|
1.3.3.1.4 5-Enolpyruvylshikimate-3-phosphate Synthase (EPSPS, EC 2.5.1.19): Target of Glyphosate |
|
|
20 | (1) |
|
1.3.3.1.5 Protoporphyrinogen Oxidase (PPO, EC 1.3.3.4) |
|
|
20 | (1) |
|
1.3.3.2 Nontarget-site Resistance by Enhanced Metabolic Detoxification |
|
|
21 | (3) |
|
1.3.3.3 Nontarget-site Resistance by Altered Herbicide Distribution |
|
|
24 | (1) |
|
1.3.3.4 Multiple Resistance |
|
|
25 | (2) |
|
1.3.4 Global Herbicide Resistance Action Committee (HRAC) |
|
|
27 | (1) |
|
1.3.4.1 Missions and Goals |
|
|
27 | (1) |
|
1.3.4.2 Members, Organization, and Tasks |
|
|
27 | (1) |
|
|
28 | (5) |
|
2 Acetohydroxyacid Synthase Inhibitors (AHAS/ALS) |
|
|
33 | (140) |
|
2.1 Biochemistry of the Target and Resistance |
|
|
33 | (7) |
|
|
|
|
2.1.1 Acetohydroxyacid Synthase (AHAS) |
|
|
33 | (4) |
|
2.1.2 Higher Order Subunit Structure |
|
|
37 | (2) |
|
2.1.3 Herbicides That Target AH AS |
|
|
39 | (1) |
|
2.1 A Binding Site for AHAS-inhibiting Herbicides |
|
|
40 | (11) |
|
2.1.5 Molecular Basis for Resistance to AH AS Inhibitors |
|
|
45 | (3) |
|
2.1.6 Resistance to AHAS-inhibiting Herbicides in Weeds |
|
|
48 | (2) |
|
2.1.7 Engineered Resistance to AHAS-inhibiting Herbicides in Crops |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
52 | (3) |
|
|
55 | (33) |
|
|
|
55 | (3) |
|
2.2.1.1 History and Development |
|
|
58 | (1) |
|
|
58 | (3) |
|
2.2.2 Agricultural Utility |
|
|
61 | (1) |
|
|
62 | (2) |
|
2.2.2.1.1 Flupyrsulfuron-methyl-sodium |
|
|
64 | (1) |
|
|
65 | (1) |
|
2.2.2.1.3 Iodosulfuron-methyl-sodium |
|
|
66 | (1) |
|
2.2.2.1.4 Mesosulfuron-methyl |
|
|
67 | (2) |
|
|
69 | (2) |
|
2.2.2.1.6 Cereals: Recent Market Introductions |
|
|
71 | (2) |
|
|
73 | (1) |
|
|
73 | (1) |
|
|
73 | (2) |
|
2.2.2.2.3 Cyclosulfamuron |
|
|
75 | (3) |
|
2.2.2.2.4 Flucetosulfuron |
|
|
78 | (2) |
|
2.2.2.2.5 Orthosulfamuron |
|
|
80 | (1) |
|
2.2.2.2.6 Rice: Recent Market Introductions |
|
|
81 | (1) |
|
|
82 | (1) |
|
|
82 | (2) |
|
|
84 | (1) |
|
|
84 | (2) |
|
2.2.2.4.2 Trifloxysulfuron-sodium |
|
|
86 | (1) |
|
2.2.3 Sulfonylurea Herbicides: Metabolic Fate and Behavior in the Soil |
|
|
87 | (1) |
|
|
88 | (1) |
|
|
88 | (2) |
|
|
90 | (5) |
|
2.3 Imidazolinone Herbicides |
|
|
95 | (3) |
|
|
|
|
|
|
95 | (1) |
|
2.3.2 History of Discovery |
|
|
96 | (2) |
|
2.3.3 Physicochemical Properties |
|
|
98 | (1) |
|
2.3 A Structural Features of Herbicidal Imidazolinones |
|
|
98 | (7) |
|
2.3.5 Imidazolinones: The Mode of Action |
|
|
100 | (1) |
|
2.3.6 Imidazolinone-tolerant Crops |
|
|
101 | (1) |
|
2.3.7 Imidazolinones: Mechanisms of Selectivity |
|
|
102 | (1) |
|
2.3.8 Commercial Uses of the Imidazolinone Herbicides |
|
|
103 | (1) |
|
|
104 | (1) |
|
|
105 | (1) |
|
|
106 | (17) |
|
|
|
|
|
|
|
106 | (2) |
|
2.4.2 N-Triazolo[ 1,5-c]pyrimidine Sulfonanilide |
|
|
108 | (1) |
|
|
108 | (1) |
|
|
109 | (1) |
|
2.4.2.3 Cloransulam-methyl and Diclosulam Crop Utility |
|
|
109 | (1) |
|
2.4.2.3.1 Florasulam Crop Utility |
|
|
110 | (1) |
|
2.4.2.4 Mechanism of Crop Selectivity |
|
|
110 | (1) |
|
2.4.2.4.1 Cloransulam-methyl and Diclosulam Mechanism of Crop Selectivity |
|
|
110 | (1) |
|
2.4.2.4.2 Florasulam Mechanism of Crop Selectivity |
|
|
110 | (1) |
|
2.4.2.5 Environmental Degradation, Ecotoxicology, and Toxicology |
|
|
111 | (1) |
|
2.4.2.5.1 Cloransulam-methyl and Diclosulam Environmental Degradation, Ecotoxicology, and Toxicology |
|
|
111 | (1) |
|
2.4.2.5.2 Florasulam Environmental Degradation, Ecotoxicology, and Toxicology |
|
|
112 | (1) |
|
2.4.3 N-Triazolo[ 1,5-c]pyrimidine Sulfonamides |
|
|
112 | (1) |
|
|
112 | (2) |
|
|
114 | (1) |
|
2.4.3.3 Penoxsulam Crop Utility |
|
|
115 | (1) |
|
2.4.3.4 Penoxsulam: Mechanism of Crop Selectivity |
|
|
115 | (2) |
|
2.4.3.5 Penoxsulam: Environmental Degradation, Ecotoxicology, and Toxicology |
|
|
117 | (1) |
|
2.4.4 N-Triazolo[ 1,5-a]pyrimidine Sulfonamides |
|
|
118 | (1) |
|
|
118 | (1) |
|
|
118 | (1) |
|
2.4.4.3 Pyroxsulam: Crop Utility |
|
|
119 | (1) |
|
2.4.4.4 Pyroxsulam: Mechanism of Crop Selectivity |
|
|
119 | (2) |
|
2.4.4.5 Pyroxsulam: Environmental Degradation, Ecotoxicology, and Toxicology |
|
|
121 | (1) |
|
|
122 | (1) |
|
|
123 | (1) |
|
|
123 | (2) |
|
2.5 Pyrimidinylcarboxylates and Sulfonanilides |
|
|
125 | (1) |
|
|
|
|
|
|
|
125 | (24) |
|
|
126 | (1) |
|
2.5.2 Discovery of the PC Herbicides |
|
|
126 | (3) |
|
2.5.3 Structure-Activity Relationships of PC Herbicides |
|
|
129 | (1) |
|
2.5.3.1 Effects of Benzene Ring Substituents in the O-Pyrimidinylsalicylic Acids |
|
|
129 | (1) |
|
2.5.3.2 Effect of a Bridge Atom in the Pyrimidinylsalicylates |
|
|
129 | (1) |
|
2.5.3.3 Pyrimidinylglycolates |
|
|
129 | (5) |
|
2.5.4 "Pyrithiobac-sodium": Cotton Herbicide |
|
|
134 | (1) |
|
|
134 | (1) |
|
|
135 | (1) |
|
2.5.5 "Bispyribac-sodium:" Herbicide in Direct-seeded Rice |
|
|
136 | (1) |
|
|
136 | (1) |
|
|
137 | (1) |
|
2.5.6 "Pyriminobac-methyl": Rice Herbicide |
|
|
137 | (1) |
|
|
137 | (2) |
|
|
139 | (1) |
|
2.5.7 Mode of Action of the PC Herbicides |
|
|
140 | (1) |
|
2.5.8 Mode of Selectivity of the PCs in Crops |
|
|
141 | (1) |
|
2.5.9 Discovery of the Sulfonanilides |
|
|
142 | (1) |
|
2.5.10 Structure-Activity Relationships |
|
|
143 | (1) |
|
2.5.10.1 Effect of the Sulfonamide Moiety in the Sulfonanilides |
|
|
144 | (1) |
|
2.5.10.2 Effects of the Bridge Moiety in the Sulfonanilides |
|
|
144 | (1) |
|
2.5.10.3 Effects of Benzene Ring Substitution in the Sulfonanilides |
|
|
145 | (2) |
|
2.5.11 "Pyrimisulfan": Rice Herbicide |
|
|
147 | (1) |
|
|
147 | (1) |
|
2.5.11.2 Mode of Action and Selectivity |
|
|
148 | (1) |
|
|
149 | (3) |
|
2.6 Sulfonylaminocarbonyl-Triazolinones |
|
|
152 | (1) |
|
|
|
|
|
152 | (1) |
|
2.6.2 Discovery of the Lead Structure |
|
|
152 | (1) |
|
2.6.3 Optimization of the Lead Structure |
|
|
152 | (3) |
|
2.6.4 Discovery of Thiencarbazone-methyl (TCM) |
|
|
155 | (2) |
|
|
157 | (1) |
|
2.6.5.1 Sulfonyl Components |
|
|
158 | (4) |
|
2.6.5.2 Triazolinone Synthesis |
|
|
162 | (1) |
|
|
162 | (4) |
|
|
166 | (1) |
|
|
167 | (6) |
|
3 Protoporphyrinogen IX Oxidase Inhibitors |
|
|
173 | (40) |
|
|
|
|
|
|
173 | (1) |
|
3.2 Historical Development |
|
|
174 | (8) |
|
|
174 | (3) |
|
3.2.2 Phenyl Ring Attached to Heterocycle |
|
|
177 | (2) |
|
3.2.3 Phenyl Tetrahydrophthalimide |
|
|
179 | (3) |
|
3.3 Nonclassical Protox Chemistries |
|
|
182 | (11) |
|
3.3.1 N-Phenyl Heterocycles: New Heterocyclic Systems |
|
|
182 | (5) |
|
3.3.2 Phenoxyphenyl and Benzyloxyphenyl Attached to Heterocycle |
|
|
187 | (1) |
|
3.3.3 Benzoheterocyclic Attached to Heterocycle |
|
|
188 | (4) |
|
3.3.4 Phenyl Ring Replaced by Benzyl Moiety |
|
|
192 | (1) |
|
3.3.5 Replacement of Phenyl Ring with Pyrazole |
|
|
192 | (1) |
|
3.3.6 Pyridinecarboxamides |
|
|
193 | (1) |
|
|
193 | (10) |
|
3.5 Control of Resistant Weeds |
|
|
203 | (1) |
|
|
204 | (1) |
|
|
204 | (1) |
|
|
205 | (8) |
|
4 Herbicides with Bleaching Properties |
|
|
213 | (90) |
|
4.1 Phytoene Desaturase Inhibitors |
|
|
213 | (24) |
|
|
|
|
213 | (1) |
|
4.1.2 Carotenoid Biosynthesis and Phytotoxic Effects of Bleaching Herbicides |
|
|
213 | (1) |
|
4.1.2.1 Targets for Bleaching Herbicides |
|
|
213 | (1) |
|
4.1.2.2 Carotenoids: Properties and Function |
|
|
214 | (1) |
|
4.1.2.3 Carotenoid Biosynthesis in Higher Plants |
|
|
215 | (1) |
|
4.1.2.3.1 The Biosynthetic Pathway |
|
|
215 | (1) |
|
4.1.2.3.2 Early Steps and Formation of Phytoene |
|
|
215 | (1) |
|
4.1.2.3.3 The Specific Carotene Pathway |
|
|
215 | (1) |
|
|
216 | (1) |
|
4.1.2.3.5 Isolated Enzymes |
|
|
217 | (1) |
|
|
217 | (1) |
|
4.1.3.1 Inhibition of Phytoene Desaturase and k-Carotene Desaturase |
|
|
217 | (1) |
|
4.1.3.2 Inhibition of Lycopene Cyclase (LCC) |
|
|
217 | (1) |
|
4.1.3.3 Genetic Engineering of Herbicide Resistance by Modification of the Carotenogenic Pathway |
|
|
218 | (1) |
|
4.1.4 Chemical Structure and Activities of PDS Inhibitors |
|
|
219 | (1) |
|
4.1.4.1 Enzyme Activity, Physical Data, and Acute Oral Toxicity of Commercial PDS Herbicides |
|
|
219 | (1) |
|
4.1.4.2 Phenoxybenzamides |
|
|
219 | (1) |
|
4.1.4.3 Phenoxypyridincarbonamides |
|
|
219 | (4) |
|
4.1.4.4 Phenoxypyridine Ethers |
|
|
223 | (1) |
|
|
223 | (1) |
|
4.1.4.6 Phenylpyridazinones |
|
|
223 | (2) |
|
4.1.4.7 Phenylpyridinones |
|
|
225 | (1) |
|
4.1.4.8 Phenylpyrrolidinones |
|
|
226 | (1) |
|
4.1.4.9 Phenyltetrahydropyrimidinones |
|
|
226 | (1) |
|
4.1.4.10 Structural Overlay for Diaryl Heterocycle PDS Inhibitors and Newer Developments |
|
|
227 | (4) |
|
4.1.4.11 Models of the Active Site: Structural Requirements |
|
|
231 | (2) |
|
4.1.5 Biology and Use Pattern |
|
|
233 | (1) |
|
4.1.6 Major Synthetic Routes for Phytoene Desaturase Inhibitors |
|
|
234 | (3) |
|
|
237 | (4) |
|
4.2 Hydroxyphenyipyruvate Dioxygenase (HPPD): The Herbicide Target |
|
|
241 | (9) |
|
|
|
4.2.1 Herbicidal Mode of Action |
|
|
241 | (3) |
|
|
244 | (1) |
|
4.2.3 Structure and Mechanism |
|
|
245 | (3) |
|
|
248 | (2) |
|
|
250 | (2) |
|
|
252 | (29) |
|
|
|
|
252 | (1) |
|
|
252 | (1) |
|
|
253 | (2) |
|
4.3.4 Synthesis of Triketones |
|
|
255 | (2) |
|
4.3.5 Structure-Activity Relationships |
|
|
257 | (2) |
|
4.3.6 Review of the Patent Literature |
|
|
259 | (10) |
|
4.3.7 Commercialized Triketone Herbicides |
|
|
269 | (10) |
|
|
279 | (2) |
|
|
281 | (5) |
|
4.4 Hydroxyphenyipyruvate Dioxygenase (HPPD) Inhibitors: Heterocycles |
|
|
286 | (15) |
|
|
|
286 | (2) |
|
|
288 | (1) |
|
4.4.2.1 Pyrazolynate (Pyrazolate) |
|
|
288 | (2) |
|
|
290 | (1) |
|
|
291 | (2) |
|
|
293 | (3) |
|
|
296 | (1) |
|
|
297 | (1) |
|
|
298 | (1) |
|
|
299 | (2) |
|
|
301 | (2) |
|
5 New Auxin Mimics and Herbicides |
|
|
303 | (48) |
|
5.1 The Molecular Mode of Action of Auxin Herbicides |
|
|
303 | (12) |
|
|
|
|
|
303 | (2) |
|
5.1.2 Effects of Auxin Treatment |
|
|
305 | (1) |
|
5.1.3 Auxin Perception and Signaling |
|
|
305 | (1) |
|
5.1.4 TIR1/AFB Auxin Receptors |
|
|
306 | (3) |
|
5.1.5 In Vitro Auxin Receptor Binding Studies |
|
|
309 | (2) |
|
5.1.6 Binding Studies with New Auxin Herbicides |
|
|
311 | (1) |
|
5.1.7 Other Auxin-Binding Proteins |
|
|
311 | (1) |
|
5.1.8 Auxin Transporters and Auxin Herbicides |
|
|
312 | (2) |
|
5.1.9 Weed Selectivity at the Site of Auxin Action |
|
|
314 | (1) |
|
5.1.10 Field Resistance to Auxin Herbicides |
|
|
314 | (1) |
|
|
315 | (1) |
|
|
315 | (3) |
|
5.2 New Auxin Mimic Herbicides: Aminopyralid |
|
|
318 | (7) |
|
|
|
|
|
|
318 | (3) |
|
5.2.2 Discovery of Aminopyralid |
|
|
321 | (1) |
|
|
322 | (1) |
|
|
322 | (1) |
|
5.2.5 Herbicidal Utility and Application |
|
|
323 | (2) |
|
|
325 | (1) |
|
5.3 Pyrimidine Carboxylic Acids: Aminocyclopyrachlor |
|
|
326 | (13) |
|
|
|
|
|
|
326 | (1) |
|
5.3.2 Discovery of Aminocyclopyrachlor |
|
|
327 | (4) |
|
5.3.3 Herbicidal Activity and General Properties of Aminocyclopyrachlor |
|
|
331 | (5) |
|
5.3.4 Mode of Action and Site of Action |
|
|
336 | (1) |
|
5.3.5 Soil and Environmental Behavior |
|
|
336 | (2) |
|
5.3.6 Resistance Management |
|
|
338 | (1) |
|
|
338 | (1) |
|
|
339 | (4) |
|
5.4 New Auxin Mimic Herbicides: 6-Arylpicolinates |
|
|
343 | (6) |
|
|
|
|
|
|
343 | (1) |
|
|
344 | (1) |
|
|
345 | (1) |
|
|
345 | (1) |
|
|
346 | (1) |
|
|
346 | (1) |
|
|
347 | (2) |
|
|
349 | (2) |
|
6 Herbicides Disturbing the Synthesis of Very-long-chain Fatty Acids |
|
|
351 | (36) |
|
6.1 Inhibitors of the Synthesis of Very-long-chain Fatty Acids (VLCFAs) |
|
|
351 | (9) |
|
|
|
|
|
6.1.1 Definition of VLCFAs and Their Role in Plants |
|
|
351 | (1) |
|
6.1.2 Biosynthesis of VLCFAs |
|
|
352 | (1) |
|
6.1.2.1 The Fatty Acid Elongase Complex |
|
|
352 | (1) |
|
6.1.2.1.1 Basics of the Elongase Complex |
|
|
352 | (1) |
|
6.1.2.1.2 Expression of FAE-like Condensing Enzymes |
|
|
353 | (1) |
|
6.1.2.1.3 Phylogenetic Analysis |
|
|
353 | (1) |
|
6.1.2.1.4 Substrate Specificity Determination |
|
|
353 | (1) |
|
6.1.3 Mode-of-action VLCFA Inhibitors |
|
|
354 | (1) |
|
6.1.3.1 History of Finding the Primary Target |
|
|
354 | (1) |
|
6.1.3.2 Inhibition of VLCFA Synthesis Causes Inhibition of Cell Division as a Secondary Effect |
|
|
355 | (1) |
|
6.1.3.3 Finding the Target Enzyme (Site of Action) |
|
|
355 | (2) |
|
6.1.3.4 Inhibitor Reaction with the Target Protein |
|
|
357 | (1) |
|
|
358 | (1) |
|
6.1.4 HRAC Classification and Characteristics of VLCFA Biosynthesis Inhibitors |
|
|
359 | (1) |
|
|
359 | (1) |
|
|
360 | (3) |
|
6.2 Chemistry and Biology of Oxyacetamides, Tetrazolinones, and Triazolinones |
|
|
363 | (8) |
|
|
|
|
363 | (1) |
|
6.2.2 Mefenacet and Flufenacet (Oxyacetamides) |
|
|
363 | (2) |
|
6.2.3 Fentrazamide (Tetrazolinone) |
|
|
365 | (3) |
|
6.2.4 Ipfencarbazone (Triazolinone) |
|
|
368 | (3) |
|
|
371 | (1) |
|
|
371 | (1) |
|
|
371 | (2) |
|
|
373 | (10) |
|
|
|
|
|
|
|
|
|
|
|
373 | (1) |
|
|
374 | (1) |
|
|
374 | (1) |
|
6.3.2.2 Biological Activities |
|
|
375 | (1) |
|
|
376 | (4) |
|
|
380 | (1) |
|
|
380 | (1) |
|
6.3.3.2 Biological Activities |
|
|
381 | (2) |
|
|
383 | (1) |
|
|
383 | (1) |
|
|
383 | (1) |
|
|
384 | (3) |
|
7 Inhibitors of Cellulose Biosynthesis |
|
|
387 | (38) |
|
|
|
|
|
387 | (5) |
|
7.1.1 Cellulose Biosynthesis |
|
|
387 | (5) |
|
7.2 Cellulose Biosynthesis Inhibitors from Different Chemical Substance Classes |
|
|
392 | (21) |
|
|
392 | (1) |
|
7.2.1.1 Chemistry of Benzonitriles |
|
|
392 | (2) |
|
7.2.1.2 Biological Activity of Benzonitriles |
|
|
394 | (1) |
|
|
395 | (1) |
|
7.2.2.1 Chemistry of Benzamides |
|
|
395 | (2) |
|
7.2.2.2 Biology of Isoxaben |
|
|
397 | (1) |
|
|
398 | (1) |
|
7.2.4 Bis-aromatic Alkynes |
|
|
399 | (1) |
|
7.2.4.1 Chemistry of Bis-aromatic Alkynes |
|
|
399 | (1) |
|
7.2.4.2 Biology of Bis-aromatic Alkynes |
|
|
400 | (1) |
|
7.2.5 Triazolocarboxamides |
|
|
401 | (1) |
|
7.2.5.1 Chemistry of Triazolocarboxamides |
|
|
401 | (1) |
|
7.2.5.2 Biology of Triazolocarboxamides: Flupoxam |
|
|
402 | (1) |
|
|
403 | (1) |
|
7.2.6.1 Chemistry of Alkylazines |
|
|
403 | (3) |
|
7.2.6.2 Biology of Alkylazines |
|
|
406 | (1) |
|
|
407 | (1) |
|
7.2.7.1 Chemistry of Thiatriazines |
|
|
407 | (2) |
|
7.2.7.2 Biology of CGA 325615 |
|
|
409 | (1) |
|
|
410 | (1) |
|
7.2.8.1 Chemistry of N-Aryl Lactams |
|
|
410 | (1) |
|
7.2.8.2 Biology of N-Aryl Lactams |
|
|
411 | (1) |
|
7.2.9 Other Synthetic Inhibitors of Cellulose Biosynthesis |
|
|
411 | (1) |
|
|
411 | (1) |
|
|
412 | (1) |
|
|
412 | (1) |
|
7.3 Properties of Commercialized Inhibitors of Cellulose Biosynthesis |
|
|
413 | (1) |
|
7.4 Cellulose Biosynthesis Inhibitors from Natural Sources |
|
|
413 | (4) |
|
|
413 | (2) |
|
|
415 | (1) |
|
|
416 | (1) |
|
|
416 | (1) |
|
|
417 | (8) |
|
8 Safeners for Herbicides |
|
|
425 | (26) |
|
|
|
|
425 | (4) |
|
8.2 Overview of Selected Safeners |
|
|
429 | (8) |
|
8.2.1 Dichloroacetamide Safeners |
|
|
429 | (1) |
|
|
429 | (2) |
|
|
431 | (1) |
|
|
431 | (1) |
|
|
431 | (1) |
|
|
432 | (2) |
|
|
434 | (2) |
|
|
436 | (1) |
|
|
437 | (1) |
|
8.3 Mechanisms of Herbicide Safener Action |
|
|
437 | (5) |
|
8.3.1 Effects of Safeners on Herbicide Metabolism |
|
|
438 | (2) |
|
8.3.2 Gene Induction and Signaling Pathways |
|
|
440 | (1) |
|
8.3.3 Influence on Herbicide Uptake |
|
|
441 | (1) |
|
8.3.4 Influence on Herbicide Translocation |
|
|
441 | (1) |
|
8.4 Mode of Action of Safeners in Agricultural Practice |
|
|
442 | (5) |
|
8.4.1 1,8-Naphthalic Anhydride (NA), Flurazole, and Fluxofenim |
|
|
442 | (1) |
|
|
443 | (1) |
|
|
444 | (1) |
|
8.4.4 Fenchlorazole-ethyl and Cloquintocet-mexyl |
|
|
444 | (1) |
|
|
444 | (2) |
|
|
446 | (1) |
|
|
446 | (1) |
|
|
447 | (1) |
|
|
447 | (4) |
|
9 Genetically Modified Herbicide-resistant Crop |
|
|
451 | (42) |
|
9.1 Development of Glyphosate and Dicamba-resistant Crops and Applications in Novel Weed Management Systems |
|
|
451 | (22) |
|
|
|
|
|
|
451 | (1) |
|
9.1.1.1 Mechanisms of Engineering HR Crops |
|
|
451 | (1) |
|
9.1.1.2 Commercialized HR Traits |
|
|
452 | (2) |
|
9.1.2 Development of Glyphosate Resistant (GR) Trait |
|
|
454 | (1) |
|
9.1.2.1 Glyphosate and Its Target |
|
|
454 | (1) |
|
9.1.2.2 Development of GR Crops |
|
|
455 | (1) |
|
9.1.2.3 Development of Roundup Hybridization System |
|
|
456 | (2) |
|
9.1.2.4 Disease Control Benefits in GR Crops |
|
|
458 | (1) |
|
9.1.3 Development of Dicamba-resistant (DR) Trait |
|
|
459 | (1) |
|
9.1.3.1 Identification of a Dicamba Deactivation Enzyme |
|
|
459 | (2) |
|
9.1.3.2 Transformation of DMO into Soybeans and Development of the Resistance Trait |
|
|
461 | (1) |
|
9.1.3.3 Field Evaluation of GR-and DR-stacked Soybeans |
|
|
462 | (2) |
|
9.1.4 Evolution of Glyphosate Resistance in Weeds |
|
|
464 | (1) |
|
9.1.5 Integrated Weed Management and Best Management Practices |
|
|
465 | (1) |
|
9.1.5.1 Cultural and Mechanical Practices |
|
|
466 | (1) |
|
9.1.5.2 Chemical Practices |
|
|
466 | (1) |
|
9.1.6 Diversification of Herbicide Site of Action in Weed Management Systems |
|
|
467 | (1) |
|
9.1.6.1 Roundup Ready Plus® (RRP) Program |
|
|
467 | (1) |
|
9.1.6.2 Development of Novel Premix Herbicide Formulations |
|
|
467 | (2) |
|
9.1.6.3 Metribuzin as a Component for Controlling Amaranthus spp. |
|
|
469 | (1) |
|
9.1.6.4 Field Performance of Weed Control Systems |
|
|
470 | (2) |
|
|
472 | (1) |
|
|
473 | (1) |
|
|
473 | (3) |
|
9.2 Glutamine Synthetase Inhibitors |
|
|
476 | (13) |
|
|
|
|
|
476 | (1) |
|
9.2.2 Role of Glutamine Synthetase in Plant Nitrogen Metabolism |
|
|
477 | (2) |
|
9.2.3 Phosphinothricin, a Potent GS Inhibitor |
|
|
479 | (1) |
|
9.2.4 Discovery of the Herbicidal Activity of Phosphinothricin |
|
|
480 | (1) |
|
9.2.5 Mode of Glutamine Synthetase Inhibition |
|
|
481 | (1) |
|
9.2.6 Physiology of the Herbicidal Activity of Phosphinothricin |
|
|
482 | (1) |
|
9.2.6.1 Herbicidal Symptoms of Phosphinothricin |
|
|
482 | (1) |
|
9.2.6.2 Physiological Effects of GS Inhibition in Plants |
|
|
482 | (1) |
|
9.2.6.3 Modulation of Herbicidal Activity of Glufosinate by Environmental Conditions |
|
|
483 | (1) |
|
9.2.6.4 Uptake and Translocation of Glufosinate-ammonium |
|
|
483 | (1) |
|
9.2.7 Use of Phosphinothricin-containing Herbicides in Agriculture and Horticulture |
|
|
484 | (1) |
|
9.2.8 Attempts to Generate Crop Selectivity for Glufosinate |
|
|
484 | (1) |
|
9.2.8.1 Genetic Approaches to Generate Glufosinate Selectivity in Crops: Target-based Approaches |
|
|
484 | (1) |
|
9.2.8.2 Crop Selectivity by Expression of Phosphinothricin Acetyltransferase |
|
|
485 | (1) |
|
9.2.8.3 Bar and pat Genes in Plant Breeding |
|
|
486 | (1) |
|
9.2.9 The Use of N-Acetyl-phosphinothricin as a Proherbicide |
|
|
487 | (1) |
|
9.2.10 Herbicide Resistance |
|
|
488 | (1) |
|
|
488 | (1) |
|
|
489 | (4) |
|
10 Microtubulin Assembly Inhibitors (Pyridines) |
|
|
493 | (9) |
|
|
|
|
|
|
493 | (1) |
|
10.2 Biology of the Microtubulin Assembly Inhibitors (Pyridines) |
|
|
494 | (1) |
|
|
494 | (1) |
|
|
494 | (1) |
|
10.3 Environmental Fate of Microtubulin Assembly Inhibitors (Pyridines) |
|
|
495 | (1) |
|
|
495 | (1) |
|
|
495 | (1) |
|
10.4 Toxicology of Microtubulin Assembly Inhibitors (Pyridines) |
|
|
495 | (1) |
|
10.5 Mode of Action of Microtubulin Assembly Inhibitors (Pyridines) |
|
|
496 | (1) |
|
10.6 Synthesis of Dithiopyr and Thiazopyr |
|
|
497 | (2) |
|
|
499 | (3) |
|
11 Acetyl-CoA Carboxylase Inhibitors |
|
|
502 | (27) |
|
|
|
|
|
|
501 | (1) |
|
|
501 | (6) |
|
|
501 | (3) |
|
11.2.2 Mode of Action of ACCase Inhibitors |
|
|
504 | (3) |
|
|
507 | (1) |
|
11.2.3.1 Detection of Resistance |
|
|
507 | (1) |
|
11.3 Chemistry of Commercialized ACCase Inhibitors |
|
|
507 | (13) |
|
11.3.1 Aryloxyphenoxypropionates (AOPPs or fops) |
|
|
507 | (1) |
|
11.3.2 Cyclohexanediones (CHDs or Dims) |
|
|
508 | (12) |
|
11.3.3 Aryl-1,3-diones (DENs) |
|
|
520 | (1) |
|
11.3.3.1 Discovery of 2-Aryl-1,3-diones |
|
|
520 | (1) |
|
11.4 Recent Herbicidal ACCase Patent Applications |
|
|
520 | (6) |
|
11.4.1 2-Aryl-cyclopentane-1,3-diones |
|
|
522 | (1) |
|
11.4.2 2-Aryl-cyclohexane-1,3-diones |
|
|
523 | (1) |
|
11.4.3 2-Aryl-tetramic and 2-aryl-tetronic acids |
|
|
524 | (1) |
|
11.4.4 Aryl Pyran and Piperidinediones |
|
|
524 | (1) |
|
11.4.5 2-Aryl-pyrazolo-1,3-diones |
|
|
524 | (1) |
|
11.4.6 2-Aryl-pyridazine-1,3-diones |
|
|
525 | (1) |
|
|
526 | (1) |
|
|
526 | (1) |
|
|
526 | (3) |
|
12 Photosynthesis Inhibitors: Regulatory Aspects, Reregistration in Europe, Market Trends, and New Products |
|
|
529 | (42) |
|
|
|
529 | (3) |
|
12.2 The Approval Process for Active Substances in the World and Especially the European Union |
|
|
532 | (6) |
|
12.3 Main Changes in Guidelines Regarding EU Reapproval |
|
|
538 | (6) |
|
12.3.1 Good Laboratory Practice |
|
|
538 | (1) |
|
12.3.2 Physical and Chemical Properties of Active Substances |
|
|
538 | (1) |
|
|
539 | (1) |
|
12.3.4 Physical and Chemical Characteristics of Preparation |
|
|
539 | (1) |
|
12.3.5 Operator Exposure Data Requirements |
|
|
539 | (1) |
|
12.3.6 Residue Data Requirements |
|
|
539 | (1) |
|
12.3.7 Estimation of Dietary Intakes of Pesticides Residues |
|
|
540 | (1) |
|
12.3.8 Fate and Behavior of Agricultural Pesticides in the Environment |
|
|
540 | (1) |
|
12.3.8.1 Concentration of Chemical in the Relevant Environmental Compartment |
|
|
541 | (1) |
|
12.3.8.2 Bioavailability of the Chemical |
|
|
541 | (1) |
|
12.3.8.3 Nature of the System or Organism |
|
|
541 | (1) |
|
12.3.9 Specific Guidance Regarding Water Limits |
|
|
541 | (1) |
|
12.3.10 Ecotoxicology Requirements |
|
|
542 | (1) |
|
12.3.10.1 EPPO Risk Assessment Schemes |
|
|
542 | (1) |
|
|
543 | (1) |
|
12.3.10.3 Honeybee Risk Assessment |
|
|
543 | (1) |
|
12.3.10.4 Risk to Nontarget Arthropods |
|
|
544 | (1) |
|
12.4 New Regulations in Europe |
|
|
544 | (4) |
|
|
544 | (1) |
|
12.4.2 New PPP Regulation (Which Replaced Directive 91/414) |
|
|
545 | (1) |
|
|
545 | (1) |
|
|
545 | (1) |
|
|
545 | (1) |
|
|
546 | (1) |
|
12.4.2.5 Methods of Analysis |
|
|
546 | (1) |
|
12.4.2.6 Impact on Human Health |
|
|
546 | (1) |
|
12.4.2.7 Fate and Behavior in the Environment |
|
|
546 | (1) |
|
|
547 | (1) |
|
12.4.2.9 Residue Definition |
|
|
547 | (1) |
|
12.4.2.10 Fate and Behavior Concerning Groundwater |
|
|
547 | (1) |
|
12.4.2.11 Candidate for Substitution |
|
|
548 | (1) |
|
12.4.2.12 Low-risk Active Substances |
|
|
548 | (1) |
|
12.5 Situation of PS II Inhibitors in the EU Markets |
|
|
548 | (10) |
|
12.6 Current Market Share of PS II Compound Groups |
|
|
558 | (1) |
|
12.7 A Relatively New Herbicide for Corn and Sugarcane: Amicarbazone |
|
|
559 | (5) |
|
|
559 | (1) |
|
12.7.2 Physicochemical Properties of Amicarbazone |
|
|
559 | (1) |
|
12.7.3 Discovery of the Active Ingredient |
|
|
560 | (2) |
|
|
562 | (1) |
|
|
562 | (2) |
|
12.7.5 Biological Behavior |
|
|
564 | (1) |
|
|
564 | (1) |
|
|
564 | (1) |
|
|
565 | (6) |
|
13 New Aspects of Plant Regulators |
|
|
571 | (14) |
|
|
|
571 | (1) |
|
13.2 Plant Growth Regulators |
|
|
571 | (3) |
|
13.3 PGRs in Modern Agriculture |
|
|
574 | (6) |
|
|
574 | (2) |
|
|
576 | (1) |
|
13.3.3 Fruiting and Growth |
|
|
577 | (1) |
|
13.3.4 Fruit Storage and Ripening |
|
|
577 | (1) |
|
|
578 | (1) |
|
|
578 | (2) |
|
13.4 Conclusions and Developments |
|
|
580 | (1) |
|
|
580 | (5) |
|
|
|
|
585 | (404) |
|
|
587 | (2) |
|
|
14 FRAC Mode-of-action Classification and Resistance Risk of Fungicides |
|
|
589 | (20) |
|
|
|
15 Fungicides Acting on Oxidative Phosphorylation |
|
|
609 | (140) |
|
15.1 The Biochemistry of Oxidative Phosphorylation: A Multiplicity of Targets for Crop Protection Chemistry |
|
|
609 | (25) |
|
|
15.2 Strobilurins and Other Complex III Inhibitors |
|
|
634 | (47) |
|
Markus Gewehrand Hubert Sauter |
|
|
15.3 Succinate Dehydrogenase Inhibitors |
|
|
681 | (22) |
|
15.3.1 Succinate Dehydrogenase Inhibitors: Anilides |
|
|
681 | (13) |
|
|
15.3.2 Succinate Dehydrogenase Inhibitors: Pyridinyl-ethyl Benzamide |
|
|
694 | (9) |
|
|
|
|
|
15.4 Uncouplersof Oxidative Phosphorylation |
|
|
703 | (24) |
|
|
15.5 NADH Inhibitors (Complex I) |
|
|
727 | (22) |
|
|
16 Fungicides Acting on Amino Acids and Protein Synthesis |
|
|
749 | (12) |
|
16.1 Anilinopyrimidines: Methionine Biosynthesis Inhibitors |
|
|
749 | (12) |
|
|
|
|
17 Fungicides Acting on Signal Transduction |
|
|
761 | (24) |
|
|
761 | (6) |
|
|
17.2 Chemistry and Biology of Fludioxonil, Fenpiclonil, and Quinoxyfen |
|
|
767 | (18) |
|
|
|
|
18 Fungicides Acting on Mitosis and Cell Division: Zoxamide, an Antitubulin Fungicide for Control of Oomycete Pathogens |
|
|
785 | (12) |
|
|
19 Sterol Biosynthesis Inhibitors |
|
|
797 | (48) |
|
|
|
20 Carboxylic Acid Amide (CAA) Fungicides |
|
|
845 | (26) |
|
|
|
|
|
|
21 Fluopicolide: A New Anti-oomycete Fungicide? |
|
|
871 | (8) |
|
|
|
|
22 Melanin Synthesis in the Cell Wall |
|
|
879 | (32) |
|
|
|
|
|
|
|
23 Fungicides with Unknown Mode of Action |
|
|
911 | (22) |
|
|
|
|
24 Recently Introduced Powdery Mildew Fungicides |
|
|
933 | (16) |
|
|
|
25 Nucleic Acid Synthesis Inhibitors: Metalaxyl-M |
|
|
949 | (10) |
|
|
|
|
|
|
959 | (20) |
|
|
|
|
|
|
27 Oxysterol-binding Protein Inhibitors: Oxathiapiprolin - A New Oomycete Fungicide That Targets An Oxysterol-binding Protein |
|
|
979 | (10) |
|
|
|
|
|
|
|
|
|
|
|
989 | (666) |
|
|
991 | (4) |
|
|
28 IRAC: Insecticide Resistance and Mode-of-action Classification of Insecticides |
|
|
995 | (18) |
|
|
|
|
|
|
29 Insect Molting and Metamorphosis |
|
|
1013 | (54) |
|
29.1 Bisacylhydrazines: Novel Chemistry for Insect Control |
|
|
1013 | (36) |
|
Tarlochan Singh Dhadialla |
|
|
|
|
29.2 Juvenoids: Pyriproxyfen |
|
|
1049 | (18) |
|
|
|
|
1067 | (36) |
|
30.1 Chitin Biosynthesis and Inhibitors |
|
|
1067 | (18) |
|
|
|
30.2 Mite Growth Inhibitors: Clofentezine, Hexythiazox, and Etoxazole |
|
|
1085 | (18) |
|
|
|
31 Midgut-Transgenic Crops Expressing Bacillus thuringiensis Cry Proteins |
|
|
1103 | (34) |
|
|
|
|
1137 | (86) |
|
32.1 Inhibitorsof Oxidative Phosphorylation |
|
|
1137 | (12) |
|
|
|
|
32.2 Inhibitors of Oxidative Phosphorylation via Disruption of the Proton Gradient |
|
|
1149 | (7) |
|
|
|
32.3 Inhibitors of Mitochondrial Electron Transport: Acaricides and Insecticides |
|
|
1156 | (46) |
|
|
|
|
|
|
|
|
32.4 Inhibitors of Lipid Synthesis: Acetyl-CoA Carboxylase Inhibitors |
|
|
1202 | (21) |
|
|
|
|
|
1223 | (278) |
|
33.1 Nicotinic Acetylcholine Receptor Competitive Modulators and Channel Blockers: Target and Selectivity Aspects |
|
|
1223 | (42) |
|
|
|
33.2 Chemical Structural Features of Nicotinic Acetylcholine Receptor Competitive Modulators |
|
|
1265 | (135) |
|
|
|
1270 | (1) |
|
33.2.1.1 Noncyclic Neonicotinoids |
|
|
1270 | (23) |
|
|
33.2.1.2 Five-membered Neonicotinoids: Imidacloprid and Thiacloprid |
|
|
1293 | (16) |
|
|
|
33.2.1.3 Six-membered Neonicotinoids: Thiamethoxam and AKD 1022 |
|
|
1309 | (27) |
|
|
33.2.2 The Sulfoximine Insecticides: Sulfoxaflor |
|
|
1336 | (25) |
|
|
|
|
|
|
|
|
|
33.2.3 Butenolides: Flupyradifurone |
|
|
1361 | (23) |
|
|
|
|
|
|
|
|
33.2.4 Triflumezopyrim: A Mesoionic Insecticide |
|
|
1384 | (16) |
|
|
|
|
|
|
|
|
|
33.3 Nicotinic Acetylcholine Receptor Allosteric Modulators: Spinosyns |
|
|
1400 | (24) |
|
|
|
|
|
|
|
|
33.4 Voltage-dependent Sodium Channel-blocking Insecticides |
|
|
1424 | (25) |
|
33.4.1 Sodium Channel-blocking Insecticides: Indoxacarb |
|
|
1424 | (16) |
|
|
|
|
|
33.4.2 Semicarbazone Insecticides: Metaflumizone |
|
|
1440 | (9) |
|
|
|
|
|
33.5 GABA-gated Chloride Channel Antagonists (Fiproles) |
|
|
1449 | (29) |
|
|
|
|
33.6 Glutamate-gated Chloride Channel Allosteric Modulators: Avermectins and Milbemycins |
|
|
1478 | (23) |
|
|
34 Selective Feeding Blockers: Pymetrozine, Flonicamid, and Pyrifluquinazon |
|
|
1501 | (26) |
|
|
35 New Unknown Mode of Action |
|
|
1527 | (14) |
|
35.1 Acaricides of Undefined Mode of Action - Amidoflumet |
|
|
1527 | (3) |
|
|
35.2 Pyridalyl: Discovery, Insecticidal Activity, and Mode of Action |
|
|
1530 | (11) |
|
|
|
36 Insecticides Affecting Calcium Homeostasis |
|
|
1541 | (1) |
|
36.1 Ryanodine Receptor Modulators: Diamides |
|
|
1541 | (8) |
|
Ulrich Ebbinghaus-Kintscher |
|
|
|
|
|
|
|
1549 | (13) |
|
Ulrich Ebbinghaus-Kintscher |
|
|
|
|
|
36.3 Anthranilic Diamide Insecticides: Chlorantraniliprole and Cyantraniliprole |
|
|
1562 | (23) |
|
|
|
|
|
|
|
|
|
|
|
|
1585 | (70) |
|
|
1585 | (30) |
|
|
|
|
37.2 Development of Tioxazafen as a New Broad-spectrum Nematicide |
|
|
1615 | (15) |
|
|
|
|
|
|
|
|
|
|
37.3 Fluopyram a Novel Nematicide for the Control of Root-knot Nematodes |
|
|
1630 | (13) |
|
|
|
37.4 Fluazaindolizine: A New Active Ingredient for the Control of Plant-parasitic Nematodes |
|
|
1643 | (12) |
|
|
|
|
|
|
|
|
|
|
|
|
|
Index |
|
1655 | |