Muutke küpsiste eelistusi

Modern Crop Protection Compounds 3rd edition [Kõva köide]

(BASF AG, Ludwigshafen, Germany), , (Heidelberg, Germany), (Bayer CropScience, Monheim, Germany)
  • Formaat: Hardback, 1784 pages, kõrgus x laius x paksus: 257x180x86 mm, kaal: 3606 g
  • Ilmumisaeg: 13-Mar-2019
  • Kirjastus: Blackwell Verlag GmbH
  • ISBN-10: 3527340890
  • ISBN-13: 9783527340897
Teised raamatud teemal:
  • Formaat: Hardback, 1784 pages, kõrgus x laius x paksus: 257x180x86 mm, kaal: 3606 g
  • Ilmumisaeg: 13-Mar-2019
  • Kirjastus: Blackwell Verlag GmbH
  • ISBN-10: 3527340890
  • ISBN-13: 9783527340897
Teised raamatud teemal:
The leading reference on this topic has just gotten better. Building on the success of the previous two editions, all the chapters have been updated to reflect the latest developments in the field, and new chapters have been added on picolinic acids, oxathiapiprolin, flupyradifurone, and other topics.
This third edition presents the most important active ingredients of modern agrochemicals, with one volume each for herbicides, fungicides, and insecticides. The international team of first-class authors from such renowned crop science companies as Bayer, Syngenta, Dow AgroSciences, DuPont (now Corteva Agriscience), and BASF, address all crucial aspects from the general chemistry and the mode of action to industrial-scale synthesis, as well as from the development of products and formulations to their application in the field.
A comprehensive and invaluable source of timely information for all of those working in modern biology, including genetics, biochemistry and chemistry, and for those in modern crop protection science, whether governmental authorities, researchers in agrochemical companies, scientists at universities, conservationists, or managers in organizations and companies involved in improvements to agricultural production.
Volume 1: Preface xxv
I Herbicides 1(2)
Overview 3(2)
Matthias Witschel
1 Herbicide Resistance Action Committee (HRAC): Herbicide Classification, Resistance Evolution, Survey, and Resistance Mitigation Activities
5(28)
Roland Beffa
Hubert Menne
Helmut Kocher
1.1 Introduction
5(2)
1.2 HRAC Herbicide Classification System
7(3)
1.3 Herbicide Resistance Survey
10(18)
1.3.1 Herbicide Resistance Definition
10(1)
1.3.2 Herbicide Resistance Population Evolution and Integrated Weed Management
10(4)
1.3.3 Herbicide Resistance Mechanisms
14(1)
1.3.3.1 Target-site Resistance
14(1)
1.3.3.1.1 Inhibitors of Photosystem II (PS II)
15(1)
1.3.3.1.2 Inhibitors of Acetyl-CoA Carboxylase (ACCase, EC 6.4.1.2)
15(3)
1.3.3.1.3 Inhibitors of Acetolactate Synthase (ALS/AHAS, EC 2.2.1.6)
18(2)
1.3.3.1.4 5-Enolpyruvylshikimate-3-phosphate Synthase (EPSPS, EC 2.5.1.19): Target of Glyphosate
20(1)
1.3.3.1.5 Protoporphyrinogen Oxidase (PPO, EC 1.3.3.4)
20(1)
1.3.3.2 Nontarget-site Resistance by Enhanced Metabolic Detoxification
21(3)
1.3.3.3 Nontarget-site Resistance by Altered Herbicide Distribution
24(1)
1.3.3.4 Multiple Resistance
25(2)
1.3.4 Global Herbicide Resistance Action Committee (HRAC)
27(1)
1.3.4.1 Missions and Goals
27(1)
1.3.4.2 Members, Organization, and Tasks
27(1)
References
28(5)
2 Acetohydroxyacid Synthase Inhibitors (AHAS/ALS)
33(140)
2.1 Biochemistry of the Target and Resistance
33(7)
Steven Gutteridge
Mark E. Thompson
John L. Andreassi
2.1.1 Acetohydroxyacid Synthase (AHAS)
33(4)
2.1.2 Higher Order Subunit Structure
37(2)
2.1.3 Herbicides That Target AH AS
39(1)
2.1 A Binding Site for AHAS-inhibiting Herbicides
40(11)
2.1.5 Molecular Basis for Resistance to AH AS Inhibitors
45(3)
2.1.6 Resistance to AHAS-inhibiting Herbicides in Weeds
48(2)
2.1.7 Engineered Resistance to AHAS-inhibiting Herbicides in Crops
50(1)
Acknowledgments
51(1)
References
52(3)
2.2 Newer Sulfonylureas
55(33)
Oswald Ort
2.2.1 Introduction
55(3)
2.2.1.1 History and Development
58(1)
2.2.1.2 Synthesis
58(3)
2.2.2 Agricultural Utility
61(1)
2.2.2.1 Cereals
62(2)
2.2.2.1.1 Flupyrsulfuron-methyl-sodium
64(1)
2.2.2.1.2 Sulfosulfuron
65(1)
2.2.2.1.3 Iodosulfuron-methyl-sodium
66(1)
2.2.2.1.4 Mesosulfuron-methyl
67(2)
2.2.2.1.5 Tritosulfuron
69(2)
2.2.2.1.6 Cereals: Recent Market Introductions
71(2)
2.2.2.2 Rice
73(1)
2.2.2.2.1 Ethoxysulfuron
73(1)
2.2.2.2.2 Azimsulfuron
73(2)
2.2.2.2.3 Cyclosulfamuron
75(3)
2.2.2.2.4 Flucetosulfuron
78(2)
2.2.2.2.5 Orthosulfamuron
80(1)
2.2.2.2.6 Rice: Recent Market Introductions
81(1)
2.2.2.3 Maize
82(1)
2.2.2.3.1 Foramsulfuron
82(2)
2.2.2.4 Other Crops
84(1)
2.2.2.4.1 Oxasulfuron
84(2)
2.2.2.4.2 Trifloxysulfuron-sodium
86(1)
2.2.3 Sulfonylurea Herbicides: Metabolic Fate and Behavior in the Soil
87(1)
2.2.4 Concluding Remarks
88(1)
Acknowledgments
88(2)
References
90(5)
2.3 Imidazolinone Herbicides
95(3)
Dale L. Shaner
Mark Stidham
Bijay Singh
Siyuan Tan
2.3.1 Overview
95(1)
2.3.2 History of Discovery
96(2)
2.3.3 Physicochemical Properties
98(1)
2.3 A Structural Features of Herbicidal Imidazolinones
98(7)
2.3.5 Imidazolinones: The Mode of Action
100(1)
2.3.6 Imidazolinone-tolerant Crops
101(1)
2.3.7 Imidazolinones: Mechanisms of Selectivity
102(1)
2.3.8 Commercial Uses of the Imidazolinone Herbicides
103(1)
2.3.9 Conclusion
104(1)
References
105(1)
2.4 Triazolopyrimidines
106(17)
Timothy C. Johnson
Richard K. Mann
Paul R. Schmitzer
Roger E. Gast
Gerrit J. de Boer
2.4.1 Introduction
106(2)
2.4.2 N-Triazolo[ 1,5-c]pyrimidine Sulfonanilide
108(1)
2.4.2.1 Synthesis
108(1)
2.4.2.2 Biology
109(1)
2.4.2.3 Cloransulam-methyl and Diclosulam Crop Utility
109(1)
2.4.2.3.1 Florasulam Crop Utility
110(1)
2.4.2.4 Mechanism of Crop Selectivity
110(1)
2.4.2.4.1 Cloransulam-methyl and Diclosulam Mechanism of Crop Selectivity
110(1)
2.4.2.4.2 Florasulam Mechanism of Crop Selectivity
110(1)
2.4.2.5 Environmental Degradation, Ecotoxicology, and Toxicology
111(1)
2.4.2.5.1 Cloransulam-methyl and Diclosulam Environmental Degradation, Ecotoxicology, and Toxicology
111(1)
2.4.2.5.2 Florasulam Environmental Degradation, Ecotoxicology, and Toxicology
112(1)
2.4.3 N-Triazolo[ 1,5-c]pyrimidine Sulfonamides
112(1)
2.4.3.1 Synthesis
112(2)
2.4.3.2 Biology
114(1)
2.4.3.3 Penoxsulam Crop Utility
115(1)
2.4.3.4 Penoxsulam: Mechanism of Crop Selectivity
115(2)
2.4.3.5 Penoxsulam: Environmental Degradation, Ecotoxicology, and Toxicology
117(1)
2.4.4 N-Triazolo[ 1,5-a]pyrimidine Sulfonamides
118(1)
2.4.4.1 AAA Synthesis
118(1)
2.4.4.2 Biology
118(1)
2.4.4.3 Pyroxsulam: Crop Utility
119(1)
2.4.4.4 Pyroxsulam: Mechanism of Crop Selectivity
119(2)
2.4.4.5 Pyroxsulam: Environmental Degradation, Ecotoxicology, and Toxicology
121(1)
2.4.5 AHAS Inhibition
122(1)
2.4.6 Conclusions
123(1)
References
123(2)
2.5 Pyrimidinylcarboxylates and Sulfonanilides
125(1)
Ryuji Tamai
Hisashi Honda
Kiyoshi Kawai
Ryo Hanai
Tsutomu Shimizu
List of Abbreviations
125(24)
2.5.1 Introduction
126(1)
2.5.2 Discovery of the PC Herbicides
126(3)
2.5.3 Structure-Activity Relationships of PC Herbicides
129(1)
2.5.3.1 Effects of Benzene Ring Substituents in the O-Pyrimidinylsalicylic Acids
129(1)
2.5.3.2 Effect of a Bridge Atom in the Pyrimidinylsalicylates
129(1)
2.5.3.3 Pyrimidinylglycolates
129(5)
2.5.4 "Pyrithiobac-sodium": Cotton Herbicide
134(1)
2.5.4.1 Discovery
134(1)
2.5.4.2 Biology
135(1)
2.5.5 "Bispyribac-sodium:" Herbicide in Direct-seeded Rice
136(1)
2.5.5.1 Discovery
136(1)
2.5.5.2 Biology
137(1)
2.5.6 "Pyriminobac-methyl": Rice Herbicide
137(1)
2.5.6.1 Discovery
137(2)
2.5.6.2 Biology
139(1)
2.5.7 Mode of Action of the PC Herbicides
140(1)
2.5.8 Mode of Selectivity of the PCs in Crops
141(1)
2.5.9 Discovery of the Sulfonanilides
142(1)
2.5.10 Structure-Activity Relationships
143(1)
2.5.10.1 Effect of the Sulfonamide Moiety in the Sulfonanilides
144(1)
2.5.10.2 Effects of the Bridge Moiety in the Sulfonanilides
144(1)
2.5.10.3 Effects of Benzene Ring Substitution in the Sulfonanilides
145(2)
2.5.11 "Pyrimisulfan": Rice Herbicide
147(1)
2.5.11.1 Biology
147(1)
2.5.11.2 Mode of Action and Selectivity
148(1)
References
149(3)
2.6 Sulfonylaminocarbonyl-Triazolinones
152(1)
Klaus-Helmut Muller
Ernst-Rudolf F. Gesing
Hans-Joachim Santel
2.6.1 Introduction
152(1)
2.6.2 Discovery of the Lead Structure
152(1)
2.6.3 Optimization of the Lead Structure
152(3)
2.6.4 Discovery of Thiencarbazone-methyl (TCM)
155(2)
2.6.5 Synthesis
157(1)
2.6.5.1 Sulfonyl Components
158(4)
2.6.5.2 Triazolinone Synthesis
162(1)
2.6.6 Biology
162(4)
2.6.7 Conclusions
166(1)
References
167(6)
3 Protoporphyrinogen IX Oxidase Inhibitors
173(40)
Cyrill Zagar
Rex Liebl
George Theodoridis
Matthias Witschel
3.1 Introduction
173(1)
3.2 Historical Development
174(8)
3.2.1 Diphenyl Ether
174(3)
3.2.2 Phenyl Ring Attached to Heterocycle
177(2)
3.2.3 Phenyl Tetrahydrophthalimide
179(3)
3.3 Nonclassical Protox Chemistries
182(11)
3.3.1 N-Phenyl Heterocycles: New Heterocyclic Systems
182(5)
3.3.2 Phenoxyphenyl and Benzyloxyphenyl Attached to Heterocycle
187(1)
3.3.3 Benzoheterocyclic Attached to Heterocycle
188(4)
3.3.4 Phenyl Ring Replaced by Benzyl Moiety
192(1)
3.3.5 Replacement of Phenyl Ring with Pyrazole
192(1)
3.3.6 Pyridinecarboxamides
193(1)
3.4 Recent Developments
193(10)
3.5 Control of Resistant Weeds
203(1)
3.6 Toxicology
204(1)
3.7 Summary
204(1)
References
205(8)
4 Herbicides with Bleaching Properties
213(90)
4.1 Phytoene Desaturase Inhibitors
213(24)
Matthias Witschel
Gerhard Hamprecht
4.1.1 Introduction
213(1)
4.1.2 Carotenoid Biosynthesis and Phytotoxic Effects of Bleaching Herbicides
213(1)
4.1.2.1 Targets for Bleaching Herbicides
213(1)
4.1.2.2 Carotenoids: Properties and Function
214(1)
4.1.2.3 Carotenoid Biosynthesis in Higher Plants
215(1)
4.1.2.3.1 The Biosynthetic Pathway
215(1)
4.1.2.3.2 Early Steps and Formation of Phytoene
215(1)
4.1.2.3.3 The Specific Carotene Pathway
215(1)
4.1.2.3.4 Cyclization
216(1)
4.1.2.3.5 Isolated Enzymes
217(1)
4.1.3 Primary Targets
217(1)
4.1.3.1 Inhibition of Phytoene Desaturase and k-Carotene Desaturase
217(1)
4.1.3.2 Inhibition of Lycopene Cyclase (LCC)
217(1)
4.1.3.3 Genetic Engineering of Herbicide Resistance by Modification of the Carotenogenic Pathway
218(1)
4.1.4 Chemical Structure and Activities of PDS Inhibitors
219(1)
4.1.4.1 Enzyme Activity, Physical Data, and Acute Oral Toxicity of Commercial PDS Herbicides
219(1)
4.1.4.2 Phenoxybenzamides
219(1)
4.1.4.3 Phenoxypyridincarbonamides
219(4)
4.1.4.4 Phenoxypyridine Ethers
223(1)
4.1.4.5 Phenylfuranones
223(1)
4.1.4.6 Phenylpyridazinones
223(2)
4.1.4.7 Phenylpyridinones
225(1)
4.1.4.8 Phenylpyrrolidinones
226(1)
4.1.4.9 Phenyltetrahydropyrimidinones
226(1)
4.1.4.10 Structural Overlay for Diaryl Heterocycle PDS Inhibitors and Newer Developments
227(4)
4.1.4.11 Models of the Active Site: Structural Requirements
231(2)
4.1.5 Biology and Use Pattern
233(1)
4.1.6 Major Synthetic Routes for Phytoene Desaturase Inhibitors
234(3)
References
237(4)
4.2 Hydroxyphenyipyruvate Dioxygenase (HPPD): The Herbicide Target
241(9)
John P. Evans
Timothy R. Hawkes
4.2.1 Herbicidal Mode of Action
241(3)
4.2.2 Selectivity
244(1)
4.2.3 Structure and Mechanism
245(3)
4.2.4 Inhibition
248(2)
References
250(2)
4.3 Triketones
252(29)
Andrew J.F. Edmunds
James A. Morris
4.3.1 Introduction
252(1)
4.3.2 Discovery
252(1)
4.3.3 Mode of Action
253(2)
4.3.4 Synthesis of Triketones
255(2)
4.3.5 Structure-Activity Relationships
257(2)
4.3.6 Review of the Patent Literature
259(10)
4.3.7 Commercialized Triketone Herbicides
269(10)
4.3.8 Summary
279(2)
References
281(5)
4.4 Hydroxyphenyipyruvate Dioxygenase (HPPD) Inhibitors: Heterocycles
286(15)
Andreas van Almsick
4.4.1 Introduction
286(2)
4.4.2 Market Products
288(1)
4.4.2.1 Pyrazolynate (Pyrazolate)
288(2)
4.4.2.2 Pyrazoxyfen
290(1)
4.4.2.3 Benzofenap
291(2)
4.4.2.4 Isoxaflutole
293(3)
4.4.2.5 Topramezone
296(1)
4.4.2.6 Pyrasulfotole
297(1)
4.4.2.7 Tolpyralate
298(1)
4.4.3 Conclusion
299(2)
References
301(2)
5 New Auxin Mimics and Herbicides
303(48)
5.1 The Molecular Mode of Action of Auxin Herbicides
303(12)
Jared L. Bell
Paul R. Schmitzer
Terence A. Walsh
5.1.1 Introduction
303(2)
5.1.2 Effects of Auxin Treatment
305(1)
5.1.3 Auxin Perception and Signaling
305(1)
5.1.4 TIR1/AFB Auxin Receptors
306(3)
5.1.5 In Vitro Auxin Receptor Binding Studies
309(2)
5.1.6 Binding Studies with New Auxin Herbicides
311(1)
5.1.7 Other Auxin-Binding Proteins
311(1)
5.1.8 Auxin Transporters and Auxin Herbicides
312(2)
5.1.9 Weed Selectivity at the Site of Auxin Action
314(1)
5.1.10 Field Resistance to Auxin Herbicides
314(1)
5.1.11 Conclusion
315(1)
References
315(3)
5.2 New Auxin Mimic Herbicides: Aminopyralid
318(7)
Jeffrey B. Epp
Roger E. Gast
Jeff A. Nelson
William C. Lo
5.2.1 Introduction
318(3)
5.2.2 Discovery of Aminopyralid
321(1)
5.2.3 Chemistry
322(1)
5.2.4 Mode of Action
322(1)
5.2.5 Herbicidal Utility and Application
323(2)
References
325(1)
5.3 Pyrimidine Carboxylic Acids: Aminocyclopyrachlor
326(13)
Hansjorg Krdhmer
Harry J. Strek
Jon S. Claus
Bruce L. Finkelstein
5.3.1 Introduction
326(1)
5.3.2 Discovery of Aminocyclopyrachlor
327(4)
5.3.3 Herbicidal Activity and General Properties of Aminocyclopyrachlor
331(5)
5.3.4 Mode of Action and Site of Action
336(1)
5.3.5 Soil and Environmental Behavior
336(2)
5.3.6 Resistance Management
338(1)
5.3.7 Conclusions
338(1)
References
339(4)
5.4 New Auxin Mimic Herbicides: 6-Arylpicolinates
343(6)
Paul R. Schmitzer
Mauricio Morell
Roger E. Gast
Monte R. Weimer
5.4.1 Introduction
343(1)
5.4.2 Discovery
344(1)
5.4.3 Chemistry
345(1)
5.4.4 Mode of Action
345(1)
5.4.5 Herbicidal Utility
346(1)
5.4.5.1 Arylex Active
346(1)
5.4.5.2 Rinskor Active
347(2)
References
349(2)
6 Herbicides Disturbing the Synthesis of Very-long-chain Fatty Acids
351(36)
6.1 Inhibitors of the Synthesis of Very-long-chain Fatty Acids (VLCFAs)
351(9)
Hansjorg Krahmer
Rebecka Ducker
Roland Beffa
Peter Babczinski
6.1.1 Definition of VLCFAs and Their Role in Plants
351(1)
6.1.2 Biosynthesis of VLCFAs
352(1)
6.1.2.1 The Fatty Acid Elongase Complex
352(1)
6.1.2.1.1 Basics of the Elongase Complex
352(1)
6.1.2.1.2 Expression of FAE-like Condensing Enzymes
353(1)
6.1.2.1.3 Phylogenetic Analysis
353(1)
6.1.2.1.4 Substrate Specificity Determination
353(1)
6.1.3 Mode-of-action VLCFA Inhibitors
354(1)
6.1.3.1 History of Finding the Primary Target
354(1)
6.1.3.2 Inhibition of VLCFA Synthesis Causes Inhibition of Cell Division as a Secondary Effect
355(1)
6.1.3.3 Finding the Target Enzyme (Site of Action)
355(2)
6.1.3.4 Inhibitor Reaction with the Target Protein
357(1)
6.1.3.5 Modeling
358(1)
6.1.4 HRAC Classification and Characteristics of VLCFA Biosynthesis Inhibitors
359(1)
6.1.5 Resistance
359(1)
References
360(3)
6.2 Chemistry and Biology of Oxyacetamides, Tetrazolinones, and Triazolinones
363(8)
Hansjorg Krahmer
Roland Beffa
6.2.1 Introduction
363(1)
6.2.2 Mefenacet and Flufenacet (Oxyacetamides)
363(2)
6.2.3 Fentrazamide (Tetrazolinone)
365(3)
6.2.4 Ipfencarbazone (Triazolinone)
368(3)
6.2.5 Conclusions
371(1)
Acknowledgments
371(1)
References
371(2)
6.3 Isoxazolines
373(10)
Masao Nakatani
Masaru Shibata
AtsushiSato
HisashiHonda
Yoshitaka Tanetani
Kiyoshi Kawai
Ryo Hanai
Takumi Yoshimura
Tsutomu Shimizu
6.3.1 Introduction
373(1)
6.3.2 Pyroxasulfone
374(1)
6.3.2.1 Chemistry
374(1)
6.3.2.2 Biological Activities
375(1)
6.3.2.3 Mode of Action
376(4)
6.3.3 Fenoxasulfone
380(1)
6.3.3.1 Chemistry
380(1)
6.3.3.2 Biological Activities
381(2)
6.3.3.3 Mode of Action
383(1)
6.3.4 Conclusions
383(1)
Abbreviations
383(1)
References
384(3)
7 Inhibitors of Cellulose Biosynthesis
387(38)
Hansjorg Dietrich
Jade Cottam Jones
Bernd Laber
7.1 Introduction
387(5)
7.1.1 Cellulose Biosynthesis
387(5)
7.2 Cellulose Biosynthesis Inhibitors from Different Chemical Substance Classes
392(21)
7.2.1 Nitriles
392(1)
7.2.1.1 Chemistry of Benzonitriles
392(2)
7.2.1.2 Biological Activity of Benzonitriles
394(1)
7.2.2 Benzamides
395(1)
7.2.2.1 Chemistry of Benzamides
395(2)
7.2.2.2 Biology of Isoxaben
397(1)
7.2.3 Acetamides
398(1)
7.2.4 Bis-aromatic Alkynes
399(1)
7.2.4.1 Chemistry of Bis-aromatic Alkynes
399(1)
7.2.4.2 Biology of Bis-aromatic Alkynes
400(1)
7.2.5 Triazolocarboxamides
401(1)
7.2.5.1 Chemistry of Triazolocarboxamides
401(1)
7.2.5.2 Biology of Triazolocarboxamides: Flupoxam
402(1)
7.2.6 Alkylazines
403(1)
7.2.6.1 Chemistry of Alkylazines
403(3)
7.2.6.2 Biology of Alkylazines
406(1)
7.2.7 Thiatriazines
407(1)
7.2.7.1 Chemistry of Thiatriazines
407(2)
7.2.7.2 Biology of CGA 325615
409(1)
7.2.8 N-Aryl Lactams
410(1)
7.2.8.1 Chemistry of N-Aryl Lactams
410(1)
7.2.8.2 Biology of N-Aryl Lactams
411(1)
7.2.9 Other Synthetic Inhibitors of Cellulose Biosynthesis
411(1)
7.2.9.1 Coumarins
411(1)
7.2.9.2 Cobtorin
412(1)
7.2.9.3 CESTRIN
412(1)
7.3 Properties of Commercialized Inhibitors of Cellulose Biosynthesis
413(1)
7.4 Cellulose Biosynthesis Inhibitors from Natural Sources
413(4)
7.4.1 Thaxtomins
413(2)
7.4.2 Inthomycins
415(1)
7.4.3 Epopromycins
416(1)
7.4.4 Sangivamycin
416(1)
References
417(8)
8 Safeners for Herbicides
425(26)
Chris Rosinger
Wolfgang Schulte
8.1 Introduction
425(4)
8.2 Overview of Selected Safeners
429(8)
8.2.1 Dichloroacetamide Safeners
429(1)
8.2.1.1 Benoxacor
429(2)
8.2.1.2 Dichlormid
431(1)
8.2.1.3 Furilazole
431(1)
8.2.2 Oxime Ethers
431(1)
8.2.3 Cloquintocet-mexyl
432(2)
8.2.4 Mefenpyr-diethyl
434(2)
8.2.5 Isoxadifen-ethyl
436(1)
8.2.6 Cyprosulfamide
437(1)
8.3 Mechanisms of Herbicide Safener Action
437(5)
8.3.1 Effects of Safeners on Herbicide Metabolism
438(2)
8.3.2 Gene Induction and Signaling Pathways
440(1)
8.3.3 Influence on Herbicide Uptake
441(1)
8.3.4 Influence on Herbicide Translocation
441(1)
8.4 Mode of Action of Safeners in Agricultural Practice
442(5)
8.4.1 1,8-Naphthalic Anhydride (NA), Flurazole, and Fluxofenim
442(1)
8.4.2 Dichloroacetamides
443(1)
8.4.3 Fenclorim
444(1)
8.4.4 Fenchlorazole-ethyl and Cloquintocet-mexyl
444(1)
8.4.5 Mefenpyr-diethyl
444(2)
8.4.6 Isoxadifen-ethyl
446(1)
8.4.7 Cyprosulfamide
446(1)
8.5 Concluding Remarks
447(1)
References
447(4)
9 Genetically Modified Herbicide-resistant Crop
451(42)
9.1 Development of Glyphosate and Dicamba-resistant Crops and Applications in Novel Weed Management Systems
451(22)
Alejandro Perez-Jones
Neha Rana
John W. Hemminghaus
Paul C. C. Feng
9.1.1 Introduction
451(1)
9.1.1.1 Mechanisms of Engineering HR Crops
451(1)
9.1.1.2 Commercialized HR Traits
452(2)
9.1.2 Development of Glyphosate Resistant (GR) Trait
454(1)
9.1.2.1 Glyphosate and Its Target
454(1)
9.1.2.2 Development of GR Crops
455(1)
9.1.2.3 Development of Roundup Hybridization System
456(2)
9.1.2.4 Disease Control Benefits in GR Crops
458(1)
9.1.3 Development of Dicamba-resistant (DR) Trait
459(1)
9.1.3.1 Identification of a Dicamba Deactivation Enzyme
459(2)
9.1.3.2 Transformation of DMO into Soybeans and Development of the Resistance Trait
461(1)
9.1.3.3 Field Evaluation of GR-and DR-stacked Soybeans
462(2)
9.1.4 Evolution of Glyphosate Resistance in Weeds
464(1)
9.1.5 Integrated Weed Management and Best Management Practices
465(1)
9.1.5.1 Cultural and Mechanical Practices
466(1)
9.1.5.2 Chemical Practices
466(1)
9.1.6 Diversification of Herbicide Site of Action in Weed Management Systems
467(1)
9.1.6.1 Roundup Ready Plus® (RRP) Program
467(1)
9.1.6.2 Development of Novel Premix Herbicide Formulations
467(2)
9.1.6.3 Metribuzin as a Component for Controlling Amaranthus spp.
469(1)
9.1.6.4 Field Performance of Weed Control Systems
470(2)
9.1.7 Conclusions
472(1)
Acknowledgments
473(1)
References
473(3)
9.2 Glutamine Synthetase Inhibitors
476(13)
Wolfgang Schulte
Hansjorg Krahmer
Gunter Donn
9.2.1 Introduction
476(1)
9.2.2 Role of Glutamine Synthetase in Plant Nitrogen Metabolism
477(2)
9.2.3 Phosphinothricin, a Potent GS Inhibitor
479(1)
9.2.4 Discovery of the Herbicidal Activity of Phosphinothricin
480(1)
9.2.5 Mode of Glutamine Synthetase Inhibition
481(1)
9.2.6 Physiology of the Herbicidal Activity of Phosphinothricin
482(1)
9.2.6.1 Herbicidal Symptoms of Phosphinothricin
482(1)
9.2.6.2 Physiological Effects of GS Inhibition in Plants
482(1)
9.2.6.3 Modulation of Herbicidal Activity of Glufosinate by Environmental Conditions
483(1)
9.2.6.4 Uptake and Translocation of Glufosinate-ammonium
483(1)
9.2.7 Use of Phosphinothricin-containing Herbicides in Agriculture and Horticulture
484(1)
9.2.8 Attempts to Generate Crop Selectivity for Glufosinate
484(1)
9.2.8.1 Genetic Approaches to Generate Glufosinate Selectivity in Crops: Target-based Approaches
484(1)
9.2.8.2 Crop Selectivity by Expression of Phosphinothricin Acetyltransferase
485(1)
9.2.8.3 Bar and pat Genes in Plant Breeding
486(1)
9.2.9 The Use of N-Acetyl-phosphinothricin as a Proherbicide
487(1)
9.2.10 Herbicide Resistance
488(1)
9.2.11 Conclusions
488(1)
References
489(4)
10 Microtubulin Assembly Inhibitors (Pyridines)
493(9)
Darin W. Lickfeldt
Denise P. Cudworth
Daniel D. Loughner
Lowell D. Markley
10.1 Introduction
493(1)
10.2 Biology of the Microtubulin Assembly Inhibitors (Pyridines)
494(1)
10.2.1 Dithiopyr
494(1)
10.2.2 Thiazopyr
494(1)
10.3 Environmental Fate of Microtubulin Assembly Inhibitors (Pyridines)
495(1)
10.3.1 Dithiopyr
495(1)
10.3.2 Thiazopyr
495(1)
10.4 Toxicology of Microtubulin Assembly Inhibitors (Pyridines)
495(1)
10.5 Mode of Action of Microtubulin Assembly Inhibitors (Pyridines)
496(1)
10.6 Synthesis of Dithiopyr and Thiazopyr
497(2)
References
499(3)
11 Acetyl-CoA Carboxylase Inhibitors
502(27)
Jean Wenger
Thierry Niderman
Chris Mathews
Steve Wailes
11.1 Introduction
501(1)
11.2 Biochemistry
501(6)
11.2.1 Overview
501(3)
11.2.2 Mode of Action of ACCase Inhibitors
504(3)
11.2.3 Resistance
507(1)
11.2.3.1 Detection of Resistance
507(1)
11.3 Chemistry of Commercialized ACCase Inhibitors
507(13)
11.3.1 Aryloxyphenoxypropionates (AOPPs or fops)
507(1)
11.3.2 Cyclohexanediones (CHDs or Dims)
508(12)
11.3.3 Aryl-1,3-diones (DENs)
520(1)
11.3.3.1 Discovery of 2-Aryl-1,3-diones
520(1)
11.4 Recent Herbicidal ACCase Patent Applications
520(6)
11.4.1 2-Aryl-cyclopentane-1,3-diones
522(1)
11.4.2 2-Aryl-cyclohexane-1,3-diones
523(1)
11.4.3 2-Aryl-tetramic and 2-aryl-tetronic acids
524(1)
11.4.4 Aryl Pyran and Piperidinediones
524(1)
11.4.5 2-Aryl-pyrazolo-1,3-diones
524(1)
11.4.6 2-Aryl-pyridazine-1,3-diones
525(1)
11.5 Summary and Outlook
526(1)
Acknowledgments
526(1)
References
526(3)
12 Photosynthesis Inhibitors: Regulatory Aspects, Reregistration in Europe, Market Trends, and New Products
529(42)
Martyn Griffiths
12.1 Introduction
529(3)
12.2 The Approval Process for Active Substances in the World and Especially the European Union
532(6)
12.3 Main Changes in Guidelines Regarding EU Reapproval
538(6)
12.3.1 Good Laboratory Practice
538(1)
12.3.2 Physical and Chemical Properties of Active Substances
538(1)
12.3.3 Storage Stability
539(1)
12.3.4 Physical and Chemical Characteristics of Preparation
539(1)
12.3.5 Operator Exposure Data Requirements
539(1)
12.3.6 Residue Data Requirements
539(1)
12.3.7 Estimation of Dietary Intakes of Pesticides Residues
540(1)
12.3.8 Fate and Behavior of Agricultural Pesticides in the Environment
540(1)
12.3.8.1 Concentration of Chemical in the Relevant Environmental Compartment
541(1)
12.3.8.2 Bioavailability of the Chemical
541(1)
12.3.8.3 Nature of the System or Organism
541(1)
12.3.9 Specific Guidance Regarding Water Limits
541(1)
12.3.10 Ecotoxicology Requirements
542(1)
12.3.10.1 EPPO Risk Assessment Schemes
542(1)
12.3.10.2 Buffer Zones
543(1)
12.3.10.3 Honeybee Risk Assessment
543(1)
12.3.10.4 Risk to Nontarget Arthropods
544(1)
12.4 New Regulations in Europe
544(4)
12.4.1 MRL Regulation
544(1)
12.4.2 New PPP Regulation (Which Replaced Directive 91/414)
545(1)
12.4.2.1 Dossier
545(1)
12.4.2.2 Efficacy
545(1)
12.4.2.3 Metabolites
545(1)
12.4.2.4 Composition
546(1)
12.4.2.5 Methods of Analysis
546(1)
12.4.2.6 Impact on Human Health
546(1)
12.4.2.7 Fate and Behavior in the Environment
546(1)
12.4.2.8 Ecotoxicology
547(1)
12.4.2.9 Residue Definition
547(1)
12.4.2.10 Fate and Behavior Concerning Groundwater
547(1)
12.4.2.11 Candidate for Substitution
548(1)
12.4.2.12 Low-risk Active Substances
548(1)
12.5 Situation of PS II Inhibitors in the EU Markets
548(10)
12.6 Current Market Share of PS II Compound Groups
558(1)
12.7 A Relatively New Herbicide for Corn and Sugarcane: Amicarbazone
559(5)
12.7.1 Introduction
559(1)
12.7.2 Physicochemical Properties of Amicarbazone
559(1)
12.7.3 Discovery of the Active Ingredient
560(2)
12.7.4 Synthesis
562(1)
12.7.4.1 Final Product
562(2)
12.7.5 Biological Behavior
564(1)
12.7.6 Metabolites
564(1)
12.8 Conclusions
564(1)
References
565(6)
13 New Aspects of Plant Regulators
571(14)
Hans Ulrich Haas
13.1 Introduction
571(1)
13.2 Plant Growth Regulators
571(3)
13.3 PGRs in Modern Agriculture
574(6)
13.3.1 Growth Inhibition
574(2)
13.3.2 Growth Promotion
576(1)
13.3.3 Fruiting and Growth
577(1)
13.3.4 Fruit Storage and Ripening
577(1)
13.3.5 Sprout Inhibition
578(1)
13.3.6 Stress Defense
578(2)
13.4 Conclusions and Developments
580(1)
References
580(5)
Volume 2
II Fungicides
585(404)
Overview
587(2)
Peter Jeschke
14 FRAC Mode-of-action Classification and Resistance Risk of Fungicides
589(20)
Dietrich Hermann
Klaus Stenzel
15 Fungicides Acting on Oxidative Phosphorylation
609(140)
15.1 The Biochemistry of Oxidative Phosphorylation: A Multiplicity of Targets for Crop Protection Chemistry
609(25)
Fergus Farley
15.2 Strobilurins and Other Complex III Inhibitors
634(47)
Markus Gewehrand Hubert Sauter
15.3 Succinate Dehydrogenase Inhibitors
681(22)
15.3.1 Succinate Dehydrogenase Inhibitors: Anilides
681(13)
Joachim Rheinheimer
15.3.2 Succinate Dehydrogenase Inhibitors: Pyridinyl-ethyl Benzamide
694(9)
Pierre-Yves Coqueron
Heiko Rieck
Jochen Kleemann
Andreas Mehl
15.4 Uncouplersof Oxidative Phosphorylation
703(24)
William G. Whittingham
15.5 NADH Inhibitors (Complex I)
727(22)
Harold Walter
16 Fungicides Acting on Amino Acids and Protein Synthesis
749(12)
16.1 Anilinopyrimidines: Methionine Biosynthesis Inhibitors
749(12)
Ulrich Gisi
Urs Muller
Samantha Hall
17 Fungicides Acting on Signal Transduction
761(24)
17.1 Mode of Action
761(6)
Andrew Corran
17.2 Chemistry and Biology of Fludioxonil, Fenpiclonil, and Quinoxyfen
767(18)
Gertrude Knauf-Beiter
Ronald Zeun
Clemens Lamberth
18 Fungicides Acting on Mitosis and Cell Division: Zoxamide, an Antitubulin Fungicide for Control of Oomycete Pathogens
785(12)
David H. Young
19 Sterol Biosynthesis Inhibitors
797(48)
Klaus Stenzel
Jean-Pierre Vors
20 Carboxylic Acid Amide (CAA) Fungicides
845(26)
Ulrich Gisi
Clemens Lamberth
Andreas Mehl
Thomas Seitz
Mathias Blum
21 Fluopicolide: A New Anti-oomycete Fungicide?
871(8)
Valerie Toquin
Marie-Pascale Latorse
Roland Beffa
22 Melanin Synthesis in the Cell Wall
879(32)
Michael Schindler
Haruko Sawada
Klaus Tietjen
Takahiro Hamada
Hiroyuki Hagiwara
Shinichi Banaba
23 Fungicides with Unknown Mode of Action
911(22)
Stefan Hillebrand
Klaus Tietjen
Jean-Luc Zundel
24 Recently Introduced Powdery Mildew Fungicides
933(16)
Jochen Dietz
Christian Winter
25 Nucleic Acid Synthesis Inhibitors: Metalaxyl-M
949(10)
Helge Sierotzki
Laura Quaranta
Urs Muller
Ulrich Gisi
26 Host Defense Inducers
959(20)
Valerie Toquin
Christoph A. Braun
Catherine Sirven
Lutz Assmann
Haruko Sawada
27 Oxysterol-binding Protein Inhibitors: Oxathiapiprolin - A New Oomycete Fungicide That Targets An Oxysterol-binding Protein
979(10)
Robert J. Pasteris
Lisa E. Hoffman
James A. Sweigard
John L. Andreassi
Henry K. Ngugi
Benjamin Perotin
Christopher P. Shepherd
Volume 3
III Insecticides
989(666)
Overview
991(4)
Peter Jeschke
28 IRAC: Insecticide Resistance and Mode-of-action Classification of Insecticides
995(18)
Ralf Nauen
Russell Slater
Thomas C. Sparks
Alfred Elbert
Alan Mccaffery
29 Insect Molting and Metamorphosis
1013(54)
29.1 Bisacylhydrazines: Novel Chemistry for Insect Control
1013(36)
Tarlochan Singh Dhadialla
Ronald Ross Jr
Luis E. Gomez
29.2 Juvenoids: Pyriproxyfen
1049(18)
Makoto Hatakoshi
Katsuya Natsuhara
30 Chitin Biosynthesis
1067(36)
30.1 Chitin Biosynthesis and Inhibitors
1067(18)
Neil A. Spomer
Joel J. Sheets
30.2 Mite Growth Inhibitors: Clofentezine, Hexythiazox, and Etoxazole
1085(18)
Ralf Nauen
Thomas Bretschneider
31 Midgut-Transgenic Crops Expressing Bacillus thuringiensis Cry Proteins
1103(34)
Jeroen Van Rie
Stefan Jansens
32 Metabolic Processes
1137(86)
32.1 Inhibitorsof Oxidative Phosphorylation
1137(12)
Fergus Farley
Roger Hall
Josef Ehrenfreund
32.2 Inhibitors of Oxidative Phosphorylation via Disruption of the Proton Gradient
1149(7)
David Kuhn
Nigel Armes
32.3 Inhibitors of Mitochondrial Electron Transport: Acaricides and Insecticides
1156(46)
Thomas C. Sparks
Carl V. DeAmicis
Mark A. Dekeyser
Takashi Furuya
Motofumi Nakano
Shinsuke Fujioka
Kozo Machiya
32.4 Inhibitors of Lipid Synthesis: Acetyl-CoA Carboxylase Inhibitors
1202(21)
Peter Jeschke
Reiner Fischer
Ralf Nauen
33 Nervous System
1223(278)
33.1 Nicotinic Acetylcholine Receptor Competitive Modulators and Channel Blockers: Target and Selectivity Aspects
1223(42)
Peter Jeschke
Ralf Nauen
33.2 Chemical Structural Features of Nicotinic Acetylcholine Receptor Competitive Modulators
1265(135)
Peter Jeschke
33.2.1 Neonicotinoids
1270(1)
33.2.1.1 Noncyclic Neonicotinoids
1270(23)
Peter Jeschke
33.2.1.2 Five-membered Neonicotinoids: Imidacloprid and Thiacloprid
1293(16)
Peter Jeschke
Koichi Moriya
33.2.1.3 Six-membered Neonicotinoids: Thiamethoxam and AKD 1022
1309(27)
Peter Maienfisch
33.2.2 The Sulfoximine Insecticides: Sulfoxaflor
1336(25)
Thomas C. Sparks
Michael R. Loso
Gerald B. Watson
Nick X. Wang
Ann M. Buysse
Benjamin M. Nugent
Vincent J. Kramer
Luis E. Gomez
33.2.3 Butenolides: Flupyradifurone
1361(23)
Peter Jeschke
Ralf Nauen
Robert Velten
Michael E. Beck
Matthias Haas
Christian Funke
Georg Raupach
33.2.4 Triflumezopyrim: A Mesoionic Insecticide
1384(16)
Daniel Cordova
Wenming Zhang
Caleb W. Holyoke Jr
James D. Barry
Vineet Singh
Isaac B. Annan
Luis A.F. Teixeira
John L. Andreassi
33.3 Nicotinic Acetylcholine Receptor Allosteric Modulators: Spinosyns
1400(24)
Thomas C. Sparks
Gerald B. Watson
James E. Dripps
Gary D. Crouse
Babu Raman
John Daeuble
M. Paige Oliver
33.4 Voltage-dependent Sodium Channel-blocking Insecticides
1424(25)
33.4.1 Sodium Channel-blocking Insecticides: Indoxacarb
1424(16)
Stephen F. McCann
Daniel Cordova
John T. Andaloro
George P. Lahm
33.4.2 Semicarbazone Insecticides: Metaflumizone
1440(9)
David Kuhn
Kazuhiro Takagi
Tomokazu Hino
Nigel Armes
33.5 GABA-gated Chloride Channel Antagonists (Fiproles)
1449(29)
Vincent L. Salgado
Stefan Schnatterer
Keith A. Holmes
33.6 Glutamate-gated Chloride Channel Allosteric Modulators: Avermectins and Milbemycins
1478(23)
Thomas Pitterna
34 Selective Feeding Blockers: Pymetrozine, Flonicamid, and Pyrifluquinazon
1501(26)
Peter Maienfisch
35 New Unknown Mode of Action
1527(14)
35.1 Acaricides of Undefined Mode of Action - Amidoflumet
1527(3)
Mark A. Dekeyser
35.2 Pyridalyl: Discovery, Insecticidal Activity, and Mode of Action
1530(11)
Shigeru Saito
Noriyasu Sakamoto
36 Insecticides Affecting Calcium Homeostasis
1541(1)
36.1 Ryanodine Receptor Modulators: Diamides
1541(8)
Ulrich Ebbinghaus-Kintscher
Peter Lummen
Hiroshi Hamaguchi
Takashi Hirooka
Takao Masaki
36.2 Flubendiamide
1549(13)
Ulrich Ebbinghaus-Kintscher
Peter Lummen
Hiroshi Hamaguchi
Takashi Hirooka
36.3 Anthranilic Diamide Insecticides: Chlorantraniliprole and Cyantraniliprole
1562(23)
George P. Lahm
Daniel Cordova
James D. Barry
John T. Andaloro
Isaac B. Annan
Paula C. Marcon
Hector E. Portillo
Luis A. Teixeira
Thomas M. Stevenson
Thomas P. Selby
37 Nematicides
1585(70)
37.1 Recent Nematicides
1585(30)
Peter Maienfisch
Olivier Loiseleur
Brigitte Slaats
37.2 Development of Tioxazafen as a New Broad-spectrum Nematicide
1615(15)
Michael S. South
Davie Wilson
Scott Spal
Urszula Slomczynska
Greg J. Bunkers
Donald Edgecomb
KentEdiger
William Miller
Wen Su
37.3 Fluopyram a Novel Nematicide for the Control of Root-knot Nematodes
1630(13)
Peter Lummen
Helmut Fursch
37.4 Fluazaindolizine: A New Active Ingredient for the Control of Plant-parasitic Nematodes
1643(12)
George P. Lahm
John A. Wiles
Daniel Cordova
Tim Thoden
Johan Desaeger
Ben K. Smith
Thomas F. Pahutski
Michel A. Rivera
Tony Meloro
Roman Kucharczyk
Renee M. Lett
Anne Daly
Brenton T. Smith
Index 1655
Peter Jeschke gained his PhD in 1986 in organic chemistry at the University of Halle/Wittenberg (Germany), after which he moved to Fahlberg-List Company (Germany) to pursue agrochemical research before moving to the Institute of Neurobiology and Brain Research, German Academy of Sciences. In 1989 he joined Bayer in Animal Health Research and eight years later he took a position in insecticide research, where he is currently principal scientist in Small Molecules Research Pest Control Chemistry at Bayer Crop Science Division. Since 2011, he has been honorary professor at the University Düsseldorf (Germany). Prof. Dr. Jeschke is an Associate Editor for Pest Management Science of the Society of Chemical Industry (UK) and he has more than 240 patent applications and publications to his name.

Matthias Witschel gained his PhD in 1994 at the University of Erlangen-Nürnberg (Germany). During his education, he also worked as a visiting researcher at UC Irvine (USA) and the College de France, Paris (France). After his post-doctoral stay at Stanford University (USA), he started in 1996 at BASF in herbicide research, where he is now senior principal scientist in global herbicide research, based in Ludwigshafen (Germany). Dr. Witschel is the author and co-author of over 270 patents and scientific publications.

Wolfgang Krämer gained his PhD in organic chemistry from the TU Stuttgart (Germany) in 1968, after which he joined the Institute of Textile Chemistry at Stuttgart University, before moving to Bayer Plant Protection as lab leader in crop protection research in 1970. Between 1984 and 1990 he was Head of Global Chemistry Fungicides, and Head of Insecticide Chemistry thereafter. Retired since 2005, Dr. Krämer has over 250 patent applications and publications to his name.

Ulrich Schirmer received his PhD in organic chemistry from Stuttgart University (Germany) in 1973, and subsequently carried out his postdoc at Paris-Orsay (France). He joined BASF in 1974, eventually becoming Senior Vice President responsible for plant protection research for chemical synthesis, process development and biological R&D. Since 2003, he has been working as a freelance consultant to start-ups in the fields of biotechnology, chemistry and agriculture. Dr. Schirmer is author and co-author of more than 100 patent applications and scientific publications.