|
Fundamentals of Optical Networks and Components |
|
|
Preface |
|
xvii | |
Acknowledgements |
|
xxi | |
Author |
|
xxiii | |
|
Chapter 1 Introductory Concept |
|
|
1 | (48) |
|
1.1 Basic Communication Model |
|
|
1 | (10) |
|
|
2 | (1) |
|
|
2 | (1) |
|
|
3 | (2) |
|
|
5 | (1) |
|
1.1.2.1 Circuit Switching |
|
|
5 | (1) |
|
|
5 | (1) |
|
|
6 | (1) |
|
1.1.2.4 Asynchronous Transfer Mode |
|
|
6 | (1) |
|
1.1.3 VSAT Network via Satellite |
|
|
6 | (4) |
|
1.1.4 Integrated Services Digital Network |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
11 | (1) |
|
1.2 Optical Fiber Principle |
|
|
11 | (11) |
|
|
12 | (1) |
|
1.2.1.1 Optical Transmission in Fiber |
|
|
12 | (3) |
|
1.2.1.2 Difference between Single- and Multimode Fibers |
|
|
15 | (2) |
|
1.2.2 Attenuation in Fiber |
|
|
17 | (1) |
|
|
17 | (1) |
|
|
18 | (1) |
|
1.2.4 Dispersion in Fiber |
|
|
19 | (2) |
|
|
21 | (1) |
|
1.2.6 Nonlinear Refraction |
|
|
21 | (1) |
|
1.2.7 Stimulated Raman Scattering |
|
|
22 | (1) |
|
1.2.8 Stimulated Brillouin Scattering |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
22 | (7) |
|
|
23 | (1) |
|
1.3.2 Semiconductor Diode Laser |
|
|
24 | (1) |
|
1.3.3 Multiple Quantum Well Laser |
|
|
25 | (1) |
|
1.3.4 Tunable and Fixed Lasers |
|
|
25 | (1) |
|
1.3.4.1 Laser Characteristics |
|
|
25 | (1) |
|
1.3.4.2 Mechanically Tuned Lasers |
|
|
26 | (1) |
|
1.3.4.3 Acoustooptically and Electrooptically Tuned Lasers |
|
|
27 | (1) |
|
1.3.4.4 Injection-Current-Tuned Lasers |
|
|
27 | (1) |
|
|
28 | (1) |
|
1.4 Optical Receivers and Filters |
|
|
29 | (7) |
|
|
29 | (1) |
|
|
30 | (1) |
|
1.4.1.2 Avalanche Photodiode |
|
|
31 | (1) |
|
1.4.2 Tunable Optical Filters |
|
|
32 | (1) |
|
1.4.2.1 Filter Characteristics |
|
|
32 | (1) |
|
|
33 | (1) |
|
1.4.2.3 Mach---Zehnder Chain |
|
|
34 | (1) |
|
1.4.2.4 Acousto-optic Filters |
|
|
34 | (1) |
|
1.4.2.5 Electrooptic Filters |
|
|
35 | (1) |
|
1.4.2.6 Liquid Crystal Fabry---Perot Filters |
|
|
35 | (1) |
|
|
35 | (1) |
|
|
35 | (1) |
|
1.4.3.2 Fiber Bragg Gratings (FBG) |
|
|
35 | (1) |
|
1.4.3.3 Thin-Film Interference Filters |
|
|
36 | (1) |
|
1.4.4 Comparison between Different Filters |
|
|
36 | (1) |
|
|
36 | (7) |
|
1.5.1 Digital-to-Digital Modulation |
|
|
37 | (1) |
|
|
37 | (1) |
|
|
37 | (1) |
|
1.5.1.3 Pseudo Ternary AMI |
|
|
38 | (1) |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
39 | (1) |
|
1.5.2 Digital-to-Analog Modulation |
|
|
40 | (1) |
|
1.5.3 Analog-to-Analog Modulation |
|
|
41 | (1) |
|
1.5.3.1 Amplitude Modulation |
|
|
41 | (1) |
|
1.5.3.2 Frequency Modulation |
|
|
41 | (1) |
|
|
42 | (1) |
|
|
43 | (1) |
|
|
43 | (2) |
|
|
45 | (4) |
|
Chapter 2 Different Optical Network Node |
|
|
49 | (26) |
|
2.1 Non-Reconfigurable Node |
|
|
49 | (4) |
|
2.1.1 Non-Reconfigurable Wavelength Router Node |
|
|
49 | (1) |
|
2.1.2 Arrayed Waveguide Grating-Based Node |
|
|
50 | (1) |
|
2.1.3 Node Architecture of a Passive-Star WDM Network |
|
|
51 | (2) |
|
2.2 Reconfigurable Wavelength-Routing Node |
|
|
53 | (15) |
|
2.2.1 Add/Drop Multiplexer---Based Reconfigurable Node in a Ring WDM Network |
|
|
54 | (3) |
|
2.2.2 Wavelength Convertible Node Architecture |
|
|
57 | (1) |
|
2.2.3 Reconfigurable Node Architecture in WDM-Based Mesh Optical Network |
|
|
58 | (1) |
|
2.2.3.1 Wavelength-Router-Based Reconfigurable Node |
|
|
59 | (1) |
|
2.2.3.2 Fully Wavelength Convertible Node Architecture of a WDM Mesh Network |
|
|
59 | (1) |
|
2.2.4 SONET over WDM Node Architecture for a Mesh Optical Network |
|
|
59 | (3) |
|
2.2.5 Transport Node of a WDM Optical Network |
|
|
62 | (1) |
|
2.2.6 IP over WDM Network Node Architecture |
|
|
62 | (1) |
|
2.2.7 Node Architecture for Multicasting Optical Network |
|
|
62 | (2) |
|
2.2.8 Traffic Grooming Node Architecture for an Optical Mesh Network |
|
|
64 | (2) |
|
2.2.9 Node Architecture of Optical Packet-Switched Network |
|
|
66 | (2) |
|
2.3 Network Node Based on Delivery and Coupling Switch |
|
|
68 | (1) |
|
2.4 Multihop Network Node Architecture |
|
|
68 | (2) |
|
|
70 | (1) |
|
|
70 | (1) |
|
|
71 | (4) |
|
Chapter 3 Devices in Optical Network Node |
|
|
75 | (60) |
|
3.1 Basic Components of Integrated Waveguide Devices |
|
|
75 | (13) |
|
3.1.1 Directional Coupler |
|
|
76 | (1) |
|
3.1.1.1 Coupled Mode Theory |
|
|
77 | (1) |
|
3.1.1.2 Power Transferred between Two Waveguides Due to Coupling |
|
|
77 | (2) |
|
3.1.1.3 Coupling Coefficient |
|
|
79 | (1) |
|
|
79 | (2) |
|
3.1.2.1 Guided Mode Propagation Analysis |
|
|
81 | (1) |
|
3.1.2.2 Power Transferred to the Output Waveguides |
|
|
82 | (1) |
|
|
82 | (1) |
|
3.1.3.1 Power Transferred to Output Waveguides |
|
|
83 | (1) |
|
3.1.4 Array Waveguide Grating |
|
|
83 | (2) |
|
|
85 | (1) |
|
|
85 | (3) |
|
3.2 Wavelength Division Multiplexer/Demultiplexer-Based Waveguide Coupler |
|
|
88 | (2) |
|
3.2.1 WDM-Based TMI Coupler |
|
|
88 | (2) |
|
|
90 | (8) |
|
|
91 | (1) |
|
3.3.1.1 TOMZ Switch-Based DC |
|
|
91 | (1) |
|
|
92 | (1) |
|
|
93 | (1) |
|
3.3.1.4 MMI Coupler-Based MZ Switch |
|
|
94 | (1) |
|
3.3.1.5 TMI Coupler-Based MZ Switch |
|
|
94 | (1) |
|
|
95 | (1) |
|
3.3.3 DC-Based Electrooptic Switch |
|
|
96 | (1) |
|
|
97 | (1) |
|
3.4 Optical CrossConnect (OXC) |
|
|
98 | (2) |
|
3.4.1 Architecture-Based CrossConnect |
|
|
99 | (1) |
|
3.4.2 Micro Electro Mechanical Systems (MEMS) |
|
|
99 | (1) |
|
|
100 | (6) |
|
3.5.1 Thermooptic Delay Line Structure |
|
|
103 | (3) |
|
|
106 | (3) |
|
3.6.1 Transmission Formats and Speeds of SONET |
|
|
106 | (3) |
|
|
109 | (1) |
|
|
109 | (8) |
|
|
109 | (1) |
|
3.7.2 Optical Amplifier Characteristics |
|
|
110 | (1) |
|
3.7.3 Semiconductor Laser Amplifier |
|
|
111 | (1) |
|
3.7.4 Doped Fiber Amplifier |
|
|
112 | (4) |
|
|
116 | (1) |
|
|
117 | (5) |
|
3.9 Wavelength Conversion |
|
|
122 | (5) |
|
3.9.1 Opto Electronic Wavelength Conversion |
|
|
123 | (1) |
|
3.9.2 Wavelength Conversion Using Coherent Effects |
|
|
124 | (1) |
|
3.9.3 Wavelength Conversion Using Cross Modulation |
|
|
125 | (1) |
|
3.9.3.1 Semiconductor Laser Based Wavelength Conversion |
|
|
126 | (1) |
|
3.9.3.2 All-Optical Wavelength Conversion Based on CPM in Optical Fiber |
|
|
126 | (1) |
|
3.10 High-Speed Silicon Photonics Transceiver |
|
|
127 | (2) |
|
3.10.1 Silicon Photonics Transceiver Architecture |
|
|
127 | (1) |
|
|
128 | (1) |
|
|
129 | (1) |
|
|
129 | (1) |
|
|
130 | (5) |
|
Chapter 4 Processing of Integrated Waveguide Devices for Optical Network Using Different Technologies |
|
|
135 | (38) |
|
4.1 Fabrication and Characteristics of Silica (SiO2)/Silicon Oxynitride (SiON)-Based Devices |
|
|
135 | (10) |
|
4.1.1 Deposition of Thin Film SiON Layer by Using LPCVD |
|
|
136 | (1) |
|
4.1.2 Deposition of SiO2/SiON Layer by Using PECVD |
|
|
137 | (1) |
|
4.1.2.1 Silicon Dioxide (SiO2) |
|
|
138 | (1) |
|
|
138 | (1) |
|
|
139 | (5) |
|
4.1.3 Tuning of Refractive Index Using Thermooptic Effect |
|
|
144 | (1) |
|
4.1.4 Devices Fabricated and Demonstrated by Using SiO2/SiON Material |
|
|
144 | (1) |
|
4.1.5 Properties of SiO2/SiON |
|
|
145 | (1) |
|
4.2 Fabrication and Characteristics of SiO2/GeO2-SiO2 Waveguide Material |
|
|
145 | (5) |
|
4.2.1 Deposition of SiO2/GeO2-SiO2 Layer Using PECVD |
|
|
146 | (1) |
|
4.2.2 Deposition of SiO2/GeO2-SiO2 Material Using Flame Hydrolysis |
|
|
147 | (1) |
|
4.2.3 Tuning of Refractive Index Using Thermooptic Effect |
|
|
148 | (1) |
|
4.2.4 Devices Fabricated and Demonstrated by Previous Authors Using SiO2/GeO2-SiO2Material |
|
|
149 | (1) |
|
4.2.5 Properties of SiO2/GeO2-SiO2 |
|
|
149 | (1) |
|
4.3 Fabrication and Characteristics of SOI Waveguide Material |
|
|
150 | (3) |
|
4.3.1 Fabrication of SOI Wafer |
|
|
150 | (1) |
|
|
150 | (1) |
|
|
150 | (1) |
|
4.3.2 Device Fabricated and Demonstrated by Previous Authors Using SOI Material |
|
|
151 | (1) |
|
|
152 | (1) |
|
4.4 Fabrication and Characteristics of Ti: LiNbO3 Waveguide Material |
|
|
153 | (6) |
|
4.4.1 Processing of LiNbO3-Based Waveguide |
|
|
153 | (1) |
|
4.4.1.1 Thermal in Ti-Diffusion Method |
|
|
153 | (4) |
|
4.4.1.2 Proton Exchange Method |
|
|
157 | (1) |
|
4.4.2 Tuning of Refractive Index Using Electrooptic Effect |
|
|
158 | (1) |
|
4.4.3 Devices Fabricated and Demonstrated by Previous Authors Using LiNbO3 Material |
|
|
158 | (1) |
|
4.4.4 Properties of LiNbO3 |
|
|
158 | (1) |
|
4.5 Fabrication and Characteristics of InP/GaAsInP Waveguide Materials |
|
|
159 | (5) |
|
4.5.1 Processing of InP/InGaAsP Waveguide |
|
|
159 | (1) |
|
4.5.1.1 Deposition of GaAsInP and InP Layers Using MBE Growth System |
|
|
160 | (3) |
|
4.5.1.2 InP/GaAsInP Waveguide Fabrication |
|
|
163 | (1) |
|
4.5.2 Tuning of Refractive Index of InP/GaAsInP Waveguide |
|
|
163 | (1) |
|
4.5.3 Devices Fabricated and Demonstrated by Previous Authors Using InP/GaAsInP Material |
|
|
163 | (1) |
|
4.5.4 Properties of InP/GaAsInP |
|
|
164 | (1) |
|
4.6 Fabrication and Characteristics of Polymeric Waveguide Material |
|
|
164 | (3) |
|
4.6.1 Fabrication of Polymeric Waveguides |
|
|
165 | (1) |
|
4.6.2 Tuning of Refractive Index Using Thermooptic Effect |
|
|
166 | (1) |
|
4.6.3 Devices Fabricated and Demonstrated by Previous Authors Using Polymer Technology |
|
|
166 | (1) |
|
4.6.4 Properties of Polymeric Material |
|
|
167 | (1) |
|
4.7 Comparative Study of Integrated Waveguide Materials |
|
|
167 | (2) |
|
|
169 | (1) |
|
|
169 | (1) |
|
|
169 | (4) |
|
Chapter 5 Data Link Control for Optical Network |
|
|
173 | (40) |
|
5.1 Frame Synchronization |
|
|
173 | (2) |
|
5.1.1 Asynchronous Transmission |
|
|
173 | (1) |
|
5.1.2 Synchronous Transmission |
|
|
174 | (1) |
|
|
175 | (4) |
|
5.2.1 Stop and Wait Flow Control |
|
|
175 | (1) |
|
5.2.2 Sliding Window Flow Control |
|
|
176 | (3) |
|
5.3 Error Detection and Control |
|
|
179 | (12) |
|
|
179 | (1) |
|
5.3.1.1 Vertical and Horizontal Redundancy Check |
|
|
179 | (2) |
|
5.3.1.2 Cyclic Redundancy Check |
|
|
181 | (4) |
|
|
185 | (1) |
|
5.3.2.1 Stop and Wait ARQ |
|
|
186 | (2) |
|
|
188 | (1) |
|
|
189 | (2) |
|
5.4 High-Level Data Link Control (HDLC) |
|
|
191 | (6) |
|
|
191 | (1) |
|
5.4.2 Types of Configurations |
|
|
191 | (1) |
|
5.4.3 Types of Data Transfer Modes |
|
|
191 | (1) |
|
|
192 | (2) |
|
|
194 | (1) |
|
|
194 | (1) |
|
|
195 | (1) |
|
|
196 | (1) |
|
5.4.6 Examples of HDLC Operations |
|
|
196 | (1) |
|
5.5 Other Link Control Protocol |
|
|
197 | (11) |
|
|
197 | (1) |
|
|
198 | (1) |
|
|
198 | (1) |
|
|
198 | (1) |
|
|
199 | (1) |
|
|
200 | (1) |
|
5.5.5.2 ATM Logical Connections |
|
|
201 | (5) |
|
5.5.5.3 Transmission of ATM Cells |
|
|
206 | (2) |
|
|
208 | (1) |
|
|
208 | (2) |
|
|
210 | (3) |
|
Chapter 6 Data Communication Networks Having No Optical Transmission |
|
|
213 | (24) |
|
6.1 History and Background of Networking-Different Generations |
|
|
213 | (1) |
|
6.2 First Generation of Network |
|
|
214 | (19) |
|
6.2.1 Protocol Architectures |
|
|
214 | (2) |
|
|
216 | (1) |
|
|
216 | (2) |
|
|
218 | (1) |
|
|
218 | (2) |
|
|
220 | (1) |
|
|
221 | (1) |
|
6.2.3 Medium Access Control |
|
|
221 | (1) |
|
|
221 | (3) |
|
|
224 | (1) |
|
|
225 | (4) |
|
6.2.4 Logical Link Control |
|
|
229 | (1) |
|
|
230 | (1) |
|
6.2.5.1 Medium Access Control (MAC) |
|
|
231 | (1) |
|
6.2.6 Asynchronous Transfer Mode (ATM) LAN |
|
|
232 | (1) |
|
|
233 | (1) |
|
|
233 | (2) |
|
|
235 | (2) |
|
Chapter 7 Fiber-Optic Network without WDM |
|
|
237 | (18) |
|
|
237 | (5) |
|
|
238 | (1) |
|
|
239 | (2) |
|
7.1.3 Distributed Queue Dual Bus (DQDB) |
|
|
241 | (1) |
|
|
242 | (3) |
|
|
243 | (1) |
|
7.2.2 MAC Protocol of FDDI |
|
|
244 | (1) |
|
|
245 | (5) |
|
|
246 | (2) |
|
|
248 | (2) |
|
7.4 Wavelength Routed Networks without WDM |
|
|
250 | (2) |
|
|
252 | (1) |
|
|
252 | (1) |
|
|
253 | (2) |
|
Chapter 8 Single-Hop and Multihop WDM Optical Networks |
|
|
255 | (48) |
|
|
255 | (5) |
|
8.1.1 Characteristics of a Basic Single-Hop WDM Star Network |
|
|
257 | (3) |
|
8.2 Different Single-Hop Optical Networks |
|
|
260 | (10) |
|
|
260 | (1) |
|
|
261 | (1) |
|
|
261 | (1) |
|
|
262 | (1) |
|
|
263 | (6) |
|
8.2.4 Fiber-Optic CrossConnect (FOX)-Based Single-Hop Network |
|
|
269 | (1) |
|
|
269 | (1) |
|
8.2.6 Other Experimental Single-Hop Systems |
|
|
269 | (1) |
|
8.3 Coordination Protocol for a Single-Hop System |
|
|
270 | (7) |
|
8.3.1 Non Pre-transmission Coordination |
|
|
270 | (1) |
|
|
270 | (1) |
|
8.3.1.2 Partial Fixed Assignment Protocols |
|
|
271 | (1) |
|
8.3.1.3 Random Access Protocol I |
|
|
272 | (1) |
|
8.3.1.4 Random Access Protocol II |
|
|
272 | (1) |
|
8.3.1.5 The PAC Optical Network |
|
|
272 | (1) |
|
8.3.2 Pre-transmission Coordination Protocols |
|
|
273 | (1) |
|
8.3.2.1 Partial Random Access Protocols |
|
|
273 | (2) |
|
8.3.2.2 Improved Random Access Protocols |
|
|
275 | (1) |
|
8.3.2.3 Receiver Collision Avoidance (RCA) Protocol |
|
|
275 | (1) |
|
8.3.2.4 Reservation Protocols |
|
|
276 | (1) |
|
8.4 Multihop Optical Network |
|
|
277 | (15) |
|
8.4.1 Optimal Virtual Topologies Using Optimization |
|
|
279 | (1) |
|
|
279 | (1) |
|
8.4.1.2 Delay-Based Optimization |
|
|
280 | (1) |
|
|
281 | (1) |
|
|
281 | (3) |
|
|
284 | (1) |
|
|
285 | (1) |
|
|
286 | (1) |
|
|
286 | (6) |
|
|
292 | (3) |
|
8.5.1 Channel Sharing in Shuffle Net |
|
|
292 | (1) |
|
8.5.2 Channel Sharing in GEMNET |
|
|
293 | (2) |
|
|
295 | (1) |
|
|
295 | (4) |
|
|
299 | (4) |
|
Chapter 9 Optical Access Architecture |
|
|
303 | (1) |
|
9.1 Performance Measures and Notation of Access Architecture |
|
|
303 | (1) |
|
9.1.1 Random-Access Methods |
|
|
304 | (1) |
|
|
305 | (2) |
|
|
307 | (1) |
|
9.1.2 Carrier Sense Multiple Access (CSMA) |
|
|
308 | (1) |
|
9.1.2.1 Non-Persistent CSMA |
|
|
308 | (3) |
|
9.1.2.2 Slotted Non-Persistent CSMA |
|
|
311 | (2) |
|
9.1.2.3 1-Persistent CSMA |
|
|
313 | (4) |
|
9.1.2.4 p-Persistent CSMA |
|
|
317 | (1) |
|
9.1.3 CSMA/CD: IEEE Standard 802.3 |
|
|
318 | (2) |
|
9.1.3.1 Throughput Analysis for Non-Persistent CSMA/CD |
|
|
320 | (2) |
|
9.1.3.2 Throughput Analysis for 1-Persistent CSMA/CD |
|
|
322 | (2) |
|
9.1.4 Stability of CSMA and CSMA/CD |
|
|
324 | (1) |
|
9.1.5 Controlled-Access Schemes |
|
|
325 | (1) |
|
9.1.5.1 Token Ring: IEEE Standard 802.5 |
|
|
326 | (1) |
|
9.1.5.2 Token Bus: IEEE Standard 802.4 |
|
|
327 | (3) |
|
9.2 Optical Access Network |
|
|
330 | (1) |
|
9.2.1 Issues in Optical Access Architecture |
|
|
331 | (1) |
|
9.3 Simple Fiber-Optic Access Network Architectures |
|
|
331 | (1) |
|
9.4 Components of PON Technologies |
|
|
332 | (2) |
|
9.4.1 Optical Splitters/Couplers |
|
|
332 | (1) |
|
|
333 | (1) |
|
9.4.3 Burst-Mode Transceivers |
|
|
334 | (1) |
|
9.5 EPON Access Architecture |
|
|
334 | (2) |
|
|
334 | (2) |
|
9.6 Multi-Point Control Protocol (MPCP) |
|
|
336 | (3) |
|
9.6.1 Discovery Processing |
|
|
336 | (1) |
|
|
337 | (1) |
|
|
338 | (1) |
|
9.6.4 Clock Synchronization |
|
|
338 | (1) |
|
9.7 Dynamic Bandwidth Allocation (DBA) Algorithms in EPON |
|
|
339 | (3) |
|
|
340 | (1) |
|
|
341 | (1) |
|
9.8 IP-Based Services over EPON |
|
|
342 | (4) |
|
9.8.1 Slot-Utilization Problem |
|
|
342 | (1) |
|
9.8.2 Circuit Emulation (TDM over IP) |
|
|
343 | (1) |
|
9.8.3 Real-Time Video and VoIP |
|
|
344 | (1) |
|
9.8.4 Performance of CoS-Aware EPON |
|
|
345 | (1) |
|
|
345 | (1) |
|
|
346 | (8) |
|
|
346 | (1) |
|
|
347 | (1) |
|
|
347 | (1) |
|
9.9.3.1 Need for WDM in PONs |
|
|
347 | (1) |
|
9.9.3.2 Arrayed Waveguide Grating (AWG)-Based WDM-PON |
|
|
348 | (1) |
|
9.9.3.3 WDM-PON Architectures |
|
|
349 | (2) |
|
9.9.3.4 Scalability of WDM-PON |
|
|
351 | (1) |
|
9.9.4 Deployment Model of WDM-PONS |
|
|
352 | (1) |
|
|
352 | (2) |
|
|
354 | (1) |
|
|
355 | (3) |
|
|
358 | (3) |
Index |
|
361 | |
|
Advances in Optical Networks and Components |
|
|
Preface |
|
xix | |
Acknowledgments |
|
xxi | |
Author |
|
xxiii | |
|
Chapter 1 Optical Ring Metropolitan Area Networks |
|
|
1 | (1) |
|
|
1 | (1) |
|
|
2 | (1) |
|
1.2.1 WDM Ring Networks for MAN |
|
|
2 | (1) |
|
1.2.2 Metro-Edge Technology |
|
|
3 | (1) |
|
1.2.3 Traffic Grooming in SONET Ring Networks |
|
|
4 | (1) |
|
1.2.3.1 Node Architecture |
|
|
4 | (1) |
|
1.2.3.2 Single-Hop Grooming in SONET/WDM Ring |
|
|
4 | (1) |
|
1.2.3.3 Multi-Hop Grooming in SONET/WDM Ring |
|
|
5 | (2) |
|
1.2.4 Dynamic Grooming in SONET/WDM Ring |
|
|
7 | (1) |
|
1.2.5 Grooming in Interconnected SONET/WDM Rings |
|
|
7 | (1) |
|
1.3 Traffic Grooming in WDM Ring Networks |
|
|
7 | (5) |
|
|
8 | (1) |
|
1.3.2 Mathematical Formulation of Single-Hop Connections |
|
|
8 | (1) |
|
1.3.3 Mathematical Formulation of Multi-hop Method |
|
|
9 | (2) |
|
1.3.4 Heuristics-Based Simulated Annealing Algorithm for Single Hop |
|
|
11 | (1) |
|
1.4 Interconnected WDM Ring Networks |
|
|
12 | (9) |
|
1.4.1 Interconnected Rings |
|
|
13 | (2) |
|
1.4.2 Traffic Grooming in Interconnected Rings |
|
|
15 | (6) |
|
1.5 Packet Communication using Tunable Wavelength ADMs |
|
|
21 | (7) |
|
|
22 | (2) |
|
1.5.2 Algorithm of Virtual Path Creation and Assigning Wavelengths |
|
|
24 | (1) |
|
|
25 | (1) |
|
1.5.4 Packet-Selection Protocols |
|
|
25 | (2) |
|
1.5.5 Implementation of Algorithm |
|
|
27 | (1) |
|
1.6 Online Connection Provisioning using ROADMs |
|
|
28 | (4) |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
30 | (1) |
|
1.6.4 Comparison of Heuristics Schemes using Numerical Examples |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
33 | (2) |
|
|
35 | (2) |
|
Chapter 2 Queuing System and Its Interconnection with Other Networks |
|
|
37 | (46) |
|
|
37 | (5) |
|
|
38 | (2) |
|
2.1.2 Representation of Queue Models |
|
|
40 | (1) |
|
2.1.3 Random Variables and Parameters |
|
|
41 | (1) |
|
|
42 | (21) |
|
|
42 | (6) |
|
|
48 | (2) |
|
|
50 | (3) |
|
|
53 | (1) |
|
2.2.5 M/M/m/m Queue System |
|
|
54 | (1) |
|
|
55 | (4) |
|
2.2.7 M/G/1 Queues with Vacations |
|
|
59 | (4) |
|
|
63 | (6) |
|
2.4 Time Reversibility --- Burke's Theorem |
|
|
69 | (3) |
|
2.5 Interconnection with Other Networks |
|
|
72 | (5) |
|
|
73 | (1) |
|
|
74 | (1) |
|
|
74 | (2) |
|
2.5.2.2 Source Routing Bridges |
|
|
76 | (1) |
|
2.5.2.3 Quality of Bridge Services |
|
|
76 | (1) |
|
|
76 | (1) |
|
|
77 | (1) |
|
|
77 | (1) |
|
|
78 | (2) |
|
|
80 | (3) |
|
Chapter 3 Routing and Wavelength Assignment |
|
|
83 | (58) |
|
|
83 | (1) |
|
3.2 LP Formulation of RWA and Its Reduction |
|
|
84 | (7) |
|
3.2.1 Reduction of Size of LP Formulation |
|
|
85 | (1) |
|
3.2.2 Randomized Rounding |
|
|
86 | (1) |
|
|
87 | (2) |
|
|
89 | (2) |
|
|
91 | (12) |
|
|
91 | (1) |
|
3.3.1.1 Dijkstra's Algorithm |
|
|
91 | (2) |
|
3.3.1.2 Bellman-Ford Algorithm |
|
|
93 | (2) |
|
|
95 | (1) |
|
|
95 | (2) |
|
3.3.2.2 Fixed-Alternate Routing |
|
|
97 | (2) |
|
|
99 | (1) |
|
|
100 | (1) |
|
3.3.2.5 Fault-Tolerant Routing |
|
|
101 | (1) |
|
3.3.2.6 Randomized Routing |
|
|
102 | (1) |
|
3.4 WA Subproblem (Heuristics) |
|
|
103 | (7) |
|
3.4.1 Wavelength Search Algorithm |
|
|
104 | (1) |
|
3.4.1.1 Exhaustive Search |
|
|
104 | (1) |
|
|
104 | (1) |
|
3.4.1.3 Simulated Annealing |
|
|
105 | (1) |
|
3.4.1.4 Genetic Algorithms |
|
|
106 | (1) |
|
|
106 | (1) |
|
|
106 | (1) |
|
3.4.2.2 First-Fit (FF) Approach |
|
|
107 | (1) |
|
3.4.2.3 Least-Used (LU) Approach |
|
|
107 | (1) |
|
3.4.2.4 Most-Used (MU) Approach |
|
|
107 | (1) |
|
3.4.2.5 Min-Product (MP) Approach |
|
|
107 | (1) |
|
3.4.2.6 Least-Loaded (LL) Approach |
|
|
107 | (1) |
|
3.4.2.7 MAX-SUM (MS) Approach |
|
|
108 | (1) |
|
3.4.2.8 Relative Capacity Loss (RCL) Approach |
|
|
109 | (1) |
|
3.4.2.9 Distributed Relative Capacity Loss (DRCL) Approach |
|
|
109 | (1) |
|
|
110 | (13) |
|
3.5.1 Wavelength Reservation |
|
|
111 | (1) |
|
3.5.1.1 Forward Reservation |
|
|
111 | (2) |
|
3.5.1.2 Backward Reservation |
|
|
113 | (4) |
|
3.5.1.3 Congestion-Based Routing WRSV Method |
|
|
117 | (1) |
|
3.5.1.4 k-Neighborhood Routing |
|
|
117 | (1) |
|
|
118 | (1) |
|
3.5.3 Limited Alternate Routing |
|
|
118 | (1) |
|
3.5.4 Static Priority Method |
|
|
118 | (1) |
|
3.5.5 Dynamic Priority Method |
|
|
119 | (4) |
|
3.6 Mathematical Formulation of RWA |
|
|
123 | (2) |
|
3.6.1 Traffic Flow Constraints |
|
|
124 | (1) |
|
3.6.2 Wavelength Constraints |
|
|
125 | (1) |
|
|
125 | (7) |
|
3.8 Comparative Study of Different RWA Algorithms on NSFNETT1 Backbone |
|
|
132 | (2) |
|
|
134 | (1) |
|
|
135 | (3) |
|
|
138 | (3) |
|
Chapter 4 Virtual Topology |
|
|
141 | (36) |
|
4.1 Virtual Topology Architecture |
|
|
141 | (2) |
|
4.1.1 General Problem Statement |
|
|
142 | (1) |
|
4.2 NSFNET Optical Backbone: Virtual Topology |
|
|
143 | (10) |
|
4.2.1 Formulation of Virtual Topology |
|
|
146 | (3) |
|
|
149 | (1) |
|
|
149 | (1) |
|
4.2.2.2 Simulated Annealing |
|
|
150 | (1) |
|
4.2.2.3 Flow-Deviation Algorithm |
|
|
151 | (2) |
|
4.3 Advanced Virtual Topology Optimization |
|
|
153 | (8) |
|
4.3.1 Problem Specification of LP |
|
|
154 | (1) |
|
4.3.1.1 Linear Formulation |
|
|
154 | (1) |
|
|
155 | (1) |
|
4.3.1.3 Objective: Optimality Criterion |
|
|
155 | (1) |
|
|
156 | (4) |
|
4.3.2 Heuristic Approaches |
|
|
160 | (1) |
|
4.4 Network Design: Resource Budgeting and Cost Model |
|
|
161 | (2) |
|
|
161 | (2) |
|
4.5 Reconfiguration of Virtual Topology |
|
|
163 | (2) |
|
4.5.1 Reconfiguration Algorithm |
|
|
163 | (1) |
|
4.5.2 NSFNET Virtual Topology Design |
|
|
164 | (1) |
|
4.6 Virtual-Topology Adaptation with Dynamic Traffic |
|
|
165 | (6) |
|
|
165 | (5) |
|
4.6.2 Adaptation with Minimal Light path Change |
|
|
170 | (1) |
|
|
171 | (1) |
|
|
172 | (1) |
|
|
173 | (4) |
|
Chapter 5 Wavelength Conversion in WDM Networks |
|
|
177 | (24) |
|
|
178 | (2) |
|
5.1.1 Wavelength Converters |
|
|
178 | (1) |
|
|
178 | (2) |
|
5.2 Optical Network Design, Control, and Management with Wavelength Conversion |
|
|
180 | (2) |
|
5.2.1 Optical Network Design with Wavelength Converter |
|
|
180 | (1) |
|
5.2.2 Control of Optical Networks with Wavelength Converters |
|
|
181 | (1) |
|
|
181 | (1) |
|
5.3 Benefit Analysis of Wavelength Conversion |
|
|
182 | (4) |
|
5.3.1 A Probabilistic Approach to WC Benefits' Analysis |
|
|
182 | (1) |
|
5.3.2 A Review of Benefit-Analysis Studies |
|
|
183 | (1) |
|
5.3.2.1 Bounds on RWA Algorithms with and without Wavelength Converters |
|
|
183 | (1) |
|
5.3.2.2 Probabilistic Model Not Based on Link-Load Assumption |
|
|
184 | (1) |
|
5.3.2.3 Probabilistic Model Based on Link-Load Assumption |
|
|
184 | (1) |
|
5.3.2.4 Probabilistic Model for a Class of Networks |
|
|
184 | (1) |
|
5.3.2.5 Multi-Fiber Networks |
|
|
185 | (1) |
|
5.3.2.6 Sparse Wavelength Conversion |
|
|
185 | (1) |
|
|
185 | (1) |
|
5.3.3 Benefits of Sparse Conversion |
|
|
185 | (1) |
|
5.4 RWA with All the Nodes Fully Wavelength Convertible |
|
|
186 | (3) |
|
5.4.1 Fully Wavelength-Convertible Node Architecture |
|
|
186 | (1) |
|
5.4.2 Mathematical Formulation and Constraints |
|
|
187 | (1) |
|
|
188 | (1) |
|
|
189 | (1) |
|
5.5 RWA of Sparse Wavelength Converter Placement Problem |
|
|
189 | (5) |
|
5.5.1 Analytical Model for the Estimation of Blocking Probability |
|
|
189 | (2) |
|
|
191 | (1) |
|
|
192 | (1) |
|
|
193 | (1) |
|
5.6 Simulation of Benefits of Using Wavelength Converters |
|
|
194 | (2) |
|
|
196 | (1) |
|
|
197 | (1) |
|
|
198 | (3) |
|
Chapter 6 Traffic Grooming in Optical Networks |
|
|
201 | (48) |
|
6.1 Review of Traffic Grooming |
|
|
201 | (1) |
|
6.2 Static Traffic Grooming |
|
|
202 | (20) |
|
6.2.1 Problem Statement for Traffic Grooming |
|
|
204 | (5) |
|
6.2.2 Mathematical (ILP) Formulation of the Static Traffic-Grooming Problem |
|
|
209 | (5) |
|
6.2.3 Numerical Simulation Results from ILP Formulations |
|
|
214 | (3) |
|
6.2.4 Heuristic Technique |
|
|
217 | (3) |
|
6.2.5 Mathematical Formulation of Other Optimization Criteria |
|
|
220 | (2) |
|
6.3 Dynamic Traffic Grooming |
|
|
222 | (8) |
|
6.3.1 Provisioning Connections in Heterogeneous WDM Networks |
|
|
222 | (6) |
|
6.3.2 Illustrative Numerical Examples |
|
|
228 | (2) |
|
6.4 Adaptive Grooming (AG) |
|
|
230 | (1) |
|
6.4.1 Performance in Terms of Different Parameters |
|
|
230 | (1) |
|
6.5 Hierarchical Switching and Waveband Grooming |
|
|
231 | (5) |
|
6.5.1 Hybrid Node Architecture |
|
|
232 | (3) |
|
6.5.2 Issues and Problems |
|
|
235 | (1) |
|
6.6 Virtual Concatenation |
|
|
236 | (2) |
|
6.6.1 Virtual Concatenation Architecture |
|
|
236 | (2) |
|
6.7 RWA of Traffic Grooming Connections |
|
|
238 | (4) |
|
6.7.1 SOURCE_SWG Algorithm |
|
|
239 | (1) |
|
|
240 | (1) |
|
6.7.3 Problem Formulation |
|
|
240 | (2) |
|
|
242 | (1) |
|
|
242 | (3) |
|
|
245 | (4) |
|
Chapter 7 Survivability of Optical Networks |
|
|
249 | (72) |
|
7.1 Parameters for Survival Schemes |
|
|
250 | (1) |
|
|
251 | (3) |
|
7.2.1 Fault Management in Ring Topology |
|
|
251 | (1) |
|
7.2.1.1 Unidirectional Path-Switched Ring (UPSR) |
|
|
252 | (1) |
|
7.2.1.2 Bidirectional Line-Switched Ring (BLSR) |
|
|
252 | (2) |
|
7.2.2 Fault Management in WDM Mesh Networks |
|
|
254 | (1) |
|
7.3 Fault-Recovery Mechanism |
|
|
254 | (3) |
|
7.3.1 Path and Link Protection |
|
|
255 | (1) |
|
7.3.2 Dedicated Protection (1:1 and 1 + 1) and M:N Shared Protection |
|
|
256 | (1) |
|
7.4 Protection Issues Related to Ring Cover, Stacked Rings |
|
|
257 | (1) |
|
7.5 Survivable Routing and Wavelength Assignment (S-RWA) |
|
|
258 | (7) |
|
7.5.1 Algorithms for Computing Link-Disjoint Paths |
|
|
258 | (2) |
|
7.5.2 ILP of S-RWA for Static Traffic Demands |
|
|
260 | (1) |
|
7.5.2.1 ILP1: Dedicated Path Protection |
|
|
261 | (1) |
|
7.5.2.2 ILP2: Shared-Path Protection |
|
|
262 | (1) |
|
7.5.3 Maximizing Share Ability for Shared-Protection Schemes |
|
|
263 | (1) |
|
7.5.3.1 Backup Route Optimization |
|
|
264 | (1) |
|
7.5.3.2 Physical Constraint on Backup Route Optimization |
|
|
264 | (1) |
|
|
265 | (1) |
|
7.7 Other Network Survivability Issues |
|
|
266 | (4) |
|
7.7.1 Service Availability |
|
|
266 | (1) |
|
|
267 | (1) |
|
7.7.2.1 Network Component Availability |
|
|
267 | (1) |
|
7.7.2.2 End-to-End Path Availability |
|
|
268 | (1) |
|
7.7.2.3 Availability of Dedicated Path-Protected Connection |
|
|
268 | (1) |
|
7.7.2.4 Availability in Backup Sharing |
|
|
268 | (2) |
|
7.8 Dynamic Routing and Wavelength Assignment under Protection |
|
|
270 | (12) |
|
7.8.1 Protection Schemes in Alternate Path Routing and Wavelength Assignment |
|
|
270 | (1) |
|
7.8.1.1 Shared protection |
|
|
270 | (2) |
|
7.8.1.2 Restricted Shared Protection |
|
|
272 | (2) |
|
7.8.2 Routing and Wavelength Assignment Based on Wavelength Converter under Protection |
|
|
274 | (3) |
|
7.8.3 Traffic Grooming-Based RWA under Protection Tree |
|
|
277 | (1) |
|
7.8.3.1 Problem Formulation |
|
|
278 | (2) |
|
|
280 | (1) |
|
7.8.3.3 DES_SWG Algorithm |
|
|
280 | (1) |
|
7.8.3.4 Analytical Model for Blocking Probability Analysis under Protection Tree |
|
|
280 | (2) |
|
7.9 Service Reliability and Restorability |
|
|
282 | (3) |
|
7.9.1 Service Reliability Disruption Rate |
|
|
282 | (1) |
|
|
283 | (1) |
|
7.9.3 Service Restorability |
|
|
283 | (1) |
|
7.9.4 Estimation of Reliability of Protection in NSFNET 71 Backbone |
|
|
283 | (2) |
|
7.10 Multicast Trees for Protection of WDM Mesh Network |
|
|
285 | (6) |
|
7.10.1 Light-Tree for Unicast Traffic |
|
|
285 | (1) |
|
7.10.1.1 Layered-Graph Model |
|
|
286 | (1) |
|
|
287 | (1) |
|
7.10.2.1 General Problem Statement of light-Trees for Unicast Traffic |
|
|
287 | (1) |
|
7.10.2.2 Formulation of the Optimization Problem: Unicast Traffic |
|
|
287 | (4) |
|
7.11 Light-Trees for Broadcast Traffic |
|
|
291 | (2) |
|
7.11.1 General Problem Statement |
|
|
291 | (1) |
|
7.11.2 Formulation of the Optimization Problem: Broadcast Traffic |
|
|
291 | (2) |
|
7.12 Light-Trees for Multicast Traffic |
|
|
293 | (8) |
|
7.12.1 General Problem Statement |
|
|
293 | (1) |
|
7.12.2 Problem Formulation for a Network with Converters |
|
|
293 | (3) |
|
7.12.3 Variation of Problem Formulation with No Converters |
|
|
296 | (1) |
|
7.12.4 Variation of Problem Formulation with Fractional-Capacity Sessions |
|
|
297 | (1) |
|
7.12.5 Variation of Problem Formulation with Splitters Constraints |
|
|
298 | (2) |
|
7.13.6 Simulation in Sample Network for Multicast Transmission |
|
|
300 | (1) |
|
7.13 Multicast Tree Protection |
|
|
301 | (9) |
|
7.13.1 Protection Schemes |
|
|
301 | (1) |
|
7.13.2 General Problem Statement |
|
|
302 | (1) |
|
7.13.2.1 Problem Formulation for a Network without A Continuity |
|
|
303 | (3) |
|
7.13.2.2 Problem Formulation for a Network with X Continuity |
|
|
306 | (2) |
|
7.13.3 Network Having Protection Based on Light-Trees |
|
|
308 | (1) |
|
7.13.4 Other Protection Schemes |
|
|
308 | (2) |
|
7.14 Protection of Traffic Grooming-Based Optical Network |
|
|
310 | (3) |
|
7.14.1 Protection-at-Lightpath (PAL) Level |
|
|
311 | (1) |
|
7.14.2 Mixed Protection-at-Connection (MPAC) Level |
|
|
312 | (1) |
|
7.14.3 Separate Protection-at-Connection (SPAC) Level |
|
|
312 | (1) |
|
|
313 | (1) |
|
|
314 | (3) |
|
|
317 | (4) |
|
Chapter 8 Restoration Schemes in the Survivability of Optical Networks |
|
|
321 | (30) |
|
|
322 | (1) |
|
|
322 | (1) |
|
8.1.2 Mesh Topology Restoration |
|
|
322 | (1) |
|
8.2 Parameters Considered in Restoration |
|
|
323 | (3) |
|
|
323 | (1) |
|
|
323 | (1) |
|
|
323 | (1) |
|
8.2.4 Capacity Efficiency |
|
|
324 | (1) |
|
8.2.5 Resource Success Time |
|
|
325 | (1) |
|
|
325 | (1) |
|
8.2.7 End-to-End Path Availability |
|
|
325 | (1) |
|
|
326 | (1) |
|
8.3 Restoration Schemes for Mesh Topology |
|
|
326 | (15) |
|
8.3.1 Path Restoration Routing Problem |
|
|
327 | (3) |
|
|
330 | (2) |
|
8.3.3 Restoration Problem |
|
|
332 | (1) |
|
8.3.3.1 Maximum Restoration Problem |
|
|
332 | (1) |
|
8.3.3.2 Restoration Route (Alternate Path) Search Procedure |
|
|
333 | (1) |
|
8.3.3.3 Link Capacity Control Procedure |
|
|
333 | (1) |
|
8.3.3.4 Concurrent Contention-Locking Procedure |
|
|
334 | (1) |
|
8.3.3.5 Optimization Algorithm |
|
|
335 | (6) |
|
8.4 Restoration Activation Architectures |
|
|
341 | (6) |
|
8.4.1 Sequential Activation Architecture |
|
|
341 | (1) |
|
8.4.2 Parallel Activation Architecture |
|
|
342 | (1) |
|
8.4.2.1 Message Processing and Exchange Reduction |
|
|
343 | (1) |
|
8.4.2.2 Cross-Connect Reduction |
|
|
344 | (1) |
|
8.4.2.3 Dedicated Signaling Channels |
|
|
344 | (1) |
|
8.4.3 Optimization Performance of Restoration Approaches |
|
|
345 | (1) |
|
8.4.3.1 Centralized Algorithms |
|
|
346 | (1) |
|
8.4.4 Scalability and Application to Service Layer Restoration |
|
|
346 | (1) |
|
8.4.4.1 Call Admission Control for Restorable Connections |
|
|
346 | (1) |
|
|
347 | (1) |
|
|
348 | (3) |
|
Chapter 9 Network Reliability and Security |
|
|
351 | (52) |
|
9.1 Connectivity Using Redundancy |
|
|
351 | (2) |
|
9.1.1 Min-Cut Max-Flow Theorem |
|
|
352 | (1) |
|
9.1.2 The Cut-Saturation Algorithm |
|
|
353 | (1) |
|
9.2 Probability of Connectivity |
|
|
353 | (3) |
|
9.2.1 Node Pair Failure Probability |
|
|
354 | (2) |
|
|
356 | (12) |
|
9.3.1 Reliability Function |
|
|
356 | (2) |
|
9.3.2 Reliability Measures |
|
|
358 | (1) |
|
9.3.3 Availability Function |
|
|
358 | (1) |
|
|
359 | (1) |
|
|
360 | (1) |
|
9.3.6 Reliability Improvement Techniques |
|
|
361 | (1) |
|
9.3.7 Availability Performance |
|
|
362 | (3) |
|
9.3.8 The Self-Heal Technique |
|
|
365 | (1) |
|
9.3.9 Fail-Safe Fiber-Optic Nodes |
|
|
366 | (2) |
|
|
368 | (6) |
|
9.4.1 Network Security Problems |
|
|
369 | (1) |
|
|
369 | (1) |
|
|
370 | (1) |
|
|
371 | (1) |
|
9.4.2.2 Transposition Ciphers |
|
|
372 | (1) |
|
9.4.2.3 Substitution Ciphers |
|
|
373 | (1) |
|
9.5 Data Encryption Standards (DES) |
|
|
374 | (17) |
|
|
375 | (1) |
|
|
375 | (1) |
|
|
376 | (9) |
|
9.5.4 Public Key Cryptography |
|
|
385 | (1) |
|
9.5.5 Congruences: Modular Arithmetic |
|
|
386 | (3) |
|
9.5.6 The Rivest-Shamir-Adleman (RSA) Algorithm |
|
|
389 | (2) |
|
9.5.7 Comparison of Cryptographic Techniques |
|
|
391 | (1) |
|
|
391 | (5) |
|
|
391 | (2) |
|
9.6.2 OCDMA-Based Encoder/Decoder |
|
|
393 | (1) |
|
|
394 | (1) |
|
9.6.4 Spread Spectrum-Based Approach |
|
|
394 | (2) |
|
|
396 | (1) |
|
|
397 | (2) |
|
|
399 | (4) |
|
Chapter 10 FTTH Standards, Deployments, and Issues |
|
|
403 | (10) |
|
|
403 | (5) |
|
10.1.1 Standards of Different PON Technology |
|
|
404 | (1) |
|
|
404 | (2) |
|
|
406 | (1) |
|
10.1.4 Generalized Framing Procedure PON (GPON) |
|
|
407 | (1) |
|
|
408 | (1) |
|
|
408 | (2) |
|
|
408 | (1) |
|
|
408 | (2) |
|
10.3 Open Research Issues |
|
|
410 | (1) |
|
|
410 | (1) |
|
10.3.2 Issues in Large-Scale IP Video Networks |
|
|
410 | (1) |
|
10.3.3 Issues in Integrated ONU/Wireless Base Station/Home Gateway/DSLAM |
|
|
410 | (1) |
|
10.3.4 Issues in Hybrid TDM/WDM-PON Architectures |
|
|
410 | (1) |
|
|
410 | (1) |
|
|
411 | (1) |
|
|
411 | (2) |
|
Chapter 11 Math Lab Codes for Optical Fiber Communication System |
|
|
413 | (26) |
|
11.1 Specification of Design of Optical Fibers |
|
|
413 | (3) |
|
11.1.1 Material specification |
|
|
413 | (1) |
|
11.1.2 Transmission Specifications |
|
|
414 | (1) |
|
11.1.3 Environmental Specifications |
|
|
415 | (1) |
|
11.2 Math Lab Codes for Design of Optical Fibers |
|
|
416 | (7) |
|
11.2.1 Codes for Program of the Design of Optical Fibers |
|
|
416 | (2) |
|
11.2.2 Codes for Design of Standard Single-Mode Fibers |
|
|
418 | (1) |
|
11.2.3 Codes of Nonzero Dispersion-Shifted Fibers |
|
|
419 | (2) |
|
11.2.4 Codes of split-step Fourier method (SSFM) |
|
|
421 | (1) |
|
11.2.5 Codes for Optical Fiber Transmission System |
|
|
422 | (1) |
|
11.3 MATLAB Codes for Optical Transmission System with Mux and Demux |
|
|
423 | (8) |
|
11.3.1 Modeling of Nonlinear Optical Fiber Transmission Systems |
|
|
425 | (2) |
|
11.3.2 Phase Modulation Model and Intensity Modulation |
|
|
427 | (3) |
|
11.3.3 Math Lab Codes for Raman Amplification and Split-Step Fourier Method |
|
|
430 | (1) |
|
11.4 Modeling of Optically Amplified Transmission System and BER |
|
|
431 | (5) |
|
11.4.1 Propagation of Optical Signals over a Single-Mode Optical Fiber-SSMF |
|
|
433 | (1) |
|
|
434 | (2) |
|
|
436 | (1) |
|
|
436 | (1) |
|
|
437 | (2) |
Index |
|
439 | |