Muutke küpsiste eelistusi

Optical Networks and Components: Fundamentals and Advances [Multiple-component retail product]

  • Formaat: Multiple-component retail product, 806 pages, kõrgus x laius: 234x156 mm, kaal: 1740 g, 49 Tables, black and white; 400 Illustrations, black and white, Contains 2 hardbacks
  • Ilmumisaeg: 10-Jul-2020
  • Kirjastus: CRC Press
  • ISBN-10: 0367263777
  • ISBN-13: 9780367263775
  • Multiple-component retail product
  • Hind: 313,30 €
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Raamatukogudele
  • Formaat: Multiple-component retail product, 806 pages, kõrgus x laius: 234x156 mm, kaal: 1740 g, 49 Tables, black and white; 400 Illustrations, black and white, Contains 2 hardbacks
  • Ilmumisaeg: 10-Jul-2020
  • Kirjastus: CRC Press
  • ISBN-10: 0367263777
  • ISBN-13: 9780367263775
Intended as an undergraduate/post graduate level textbook for courses on high speed optical networks as well as computer networks. Nine chapters cover basic principles of the technology and different devices for optical networks, as well as processing of integrated waveguide devices of optical networks using different technologies. It provides students, researchers and practicing engineers with an expert guide to the fundamental concepts, issues and state of the art developments in optical networks.  Includes examples throughout all the chapters of the book to aid understanding of basic problems and solutions.
Fundamentals of Optical Networks and Components
Preface xvii
Acknowledgements xxi
Author xxiii
Chapter 1 Introductory Concept
1(48)
1.1 Basic Communication Model
1(10)
1.1.1 Local Area Network
2(1)
1.1.1.1 OSI Model
2(1)
1.1.1.2 TCP/IP Protocol
3(2)
1.1.2 Wide Area Network
5(1)
1.1.2.1 Circuit Switching
5(1)
1.1.2.2 Packet Switching
5(1)
1.1.2.3 Frame Relay
6(1)
1.1.2.4 Asynchronous Transfer Mode
6(1)
1.1.3 VSAT Network via Satellite
6(4)
1.1.4 Integrated Services Digital Network
10(1)
1.1.4.1 Narrowband ISDN
11(1)
1.1.4.2 Broadband ISDN
11(1)
1.2 Optical Fiber Principle
11(11)
1.2.1 Optical Fiber
12(1)
1.2.1.1 Optical Transmission in Fiber
12(3)
1.2.1.2 Difference between Single- and Multimode Fibers
15(2)
1.2.2 Attenuation in Fiber
17(1)
1.2.2.1 Absorption
17(1)
1.2.3 Scattering Loss
18(1)
1.2.4 Dispersion in Fiber
19(2)
1.2.5 Non linearities
21(1)
1.2.6 Nonlinear Refraction
21(1)
1.2.7 Stimulated Raman Scattering
22(1)
1.2.8 Stimulated Brillouin Scattering
22(1)
1.2.9 Four-Wave Mixing
22(1)
1.3 Optical Transmitters
22(7)
1.3.1 Laser Action
23(1)
1.3.2 Semiconductor Diode Laser
24(1)
1.3.3 Multiple Quantum Well Laser
25(1)
1.3.4 Tunable and Fixed Lasers
25(1)
1.3.4.1 Laser Characteristics
25(1)
1.3.4.2 Mechanically Tuned Lasers
26(1)
1.3.4.3 Acoustooptically and Electrooptically Tuned Lasers
27(1)
1.3.4.4 Injection-Current-Tuned Lasers
27(1)
1.3.5 Laser Arrays
28(1)
1.4 Optical Receivers and Filters
29(7)
1.4.1 Photodetector
29(1)
1.4.1.1 PIN Photodiode
30(1)
1.4.1.2 Avalanche Photodiode
31(1)
1.4.2 Tunable Optical Filters
32(1)
1.4.2.1 Filter Characteristics
32(1)
1.4.2.2 Etalon
33(1)
1.4.2.3 Mach---Zehnder Chain
34(1)
1.4.2.4 Acousto-optic Filters
34(1)
1.4.2.5 Electrooptic Filters
35(1)
1.4.2.6 Liquid Crystal Fabry---Perot Filters
35(1)
1.4.3 Fixed Filters
35(1)
1.4.3.1 Grating Filters
35(1)
1.4.3.2 Fiber Bragg Gratings (FBG)
35(1)
1.4.3.3 Thin-Film Interference Filters
36(1)
1.4.4 Comparison between Different Filters
36(1)
1.5 Optical Modulation
36(7)
1.5.1 Digital-to-Digital Modulation
37(1)
1.5.1.1 NRZ
37(1)
1.5.1.2 Bipolar AMI
37(1)
1.5.1.3 Pseudo Ternary AMI
38(1)
1.5.1.4 Biphase Coding
38(1)
1.5.1.5 B8ZS Code
39(1)
1.5.1.6 HDB3 Code
39(1)
1.5.2 Digital-to-Analog Modulation
40(1)
1.5.3 Analog-to-Analog Modulation
41(1)
1.5.3.1 Amplitude Modulation
41(1)
1.5.3.2 Frequency Modulation
41(1)
1.5.3.3 Phase Modulation
42(1)
Summary
43(1)
Exercises
43(2)
References
45(4)
Chapter 2 Different Optical Network Node
49(26)
2.1 Non-Reconfigurable Node
49(4)
2.1.1 Non-Reconfigurable Wavelength Router Node
49(1)
2.1.2 Arrayed Waveguide Grating-Based Node
50(1)
2.1.3 Node Architecture of a Passive-Star WDM Network
51(2)
2.2 Reconfigurable Wavelength-Routing Node
53(15)
2.2.1 Add/Drop Multiplexer---Based Reconfigurable Node in a Ring WDM Network
54(3)
2.2.2 Wavelength Convertible Node Architecture
57(1)
2.2.3 Reconfigurable Node Architecture in WDM-Based Mesh Optical Network
58(1)
2.2.3.1 Wavelength-Router-Based Reconfigurable Node
59(1)
2.2.3.2 Fully Wavelength Convertible Node Architecture of a WDM Mesh Network
59(1)
2.2.4 SONET over WDM Node Architecture for a Mesh Optical Network
59(3)
2.2.5 Transport Node of a WDM Optical Network
62(1)
2.2.6 IP over WDM Network Node Architecture
62(1)
2.2.7 Node Architecture for Multicasting Optical Network
62(2)
2.2.8 Traffic Grooming Node Architecture for an Optical Mesh Network
64(2)
2.2.9 Node Architecture of Optical Packet-Switched Network
66(2)
2.3 Network Node Based on Delivery and Coupling Switch
68(1)
2.4 Multihop Network Node Architecture
68(2)
Summary
70(1)
Exercises
70(1)
References
71(4)
Chapter 3 Devices in Optical Network Node
75(60)
3.1 Basic Components of Integrated Waveguide Devices
75(13)
3.1.1 Directional Coupler
76(1)
3.1.1.1 Coupled Mode Theory
77(1)
3.1.1.2 Power Transferred between Two Waveguides Due to Coupling
77(2)
3.1.1.3 Coupling Coefficient
79(1)
3.1.2 MMI Coupler
79(2)
3.1.2.1 Guided Mode Propagation Analysis
81(1)
3.1.2.2 Power Transferred to the Output Waveguides
82(1)
3.1.3 TMI Coupler
82(1)
3.1.3.1 Power Transferred to Output Waveguides
83(1)
3.1.4 Array Waveguide Grating
83(2)
3.1.5 MZ Active Device
85(1)
3.1.5.1 repolarization
85(3)
3.2 Wavelength Division Multiplexer/Demultiplexer-Based Waveguide Coupler
88(2)
3.2.1 WDM-Based TMI Coupler
88(2)
3.3 Optical Switching
90(8)
3.3.1 MZ Switch
91(1)
3.3.1.1 TOMZ Switch-Based DC
91(1)
3.3.1.2 TE Polarization
92(1)
3.3.1.3 EOMZ-Based DC
93(1)
3.3.1.4 MMI Coupler-Based MZ Switch
94(1)
3.3.1.5 TMI Coupler-Based MZ Switch
94(1)
3.3.2 X-Junction Switch
95(1)
3.3.3 DC-Based Electrooptic Switch
96(1)
3.3.4 Gate Switches
97(1)
3.4 Optical CrossConnect (OXC)
98(2)
3.4.1 Architecture-Based CrossConnect
99(1)
3.4.2 Micro Electro Mechanical Systems (MEMS)
99(1)
3.5 Optical ADM (OADM)
100(6)
3.5.1 Thermooptic Delay Line Structure
103(3)
3.6 SONET/SDH
106(3)
3.6.1 Transmission Formats and Speeds of SONET
106(3)
3.6.2 SONET/SDH Rings
109(1)
3.7 Optical Regenerator
109(8)
3.7.1 Optical Amplifiers
109(1)
3.7.2 Optical Amplifier Characteristics
110(1)
3.7.3 Semiconductor Laser Amplifier
111(1)
3.7.4 Doped Fiber Amplifier
112(4)
3.7.5 Raman Amplifier
116(1)
3.8 Channel Equalizers
117(5)
3.9 Wavelength Conversion
122(5)
3.9.1 Opto Electronic Wavelength Conversion
123(1)
3.9.2 Wavelength Conversion Using Coherent Effects
124(1)
3.9.3 Wavelength Conversion Using Cross Modulation
125(1)
3.9.3.1 Semiconductor Laser Based Wavelength Conversion
126(1)
3.9.3.2 All-Optical Wavelength Conversion Based on CPM in Optical Fiber
126(1)
3.10 High-Speed Silicon Photonics Transceiver
127(2)
3.10.1 Silicon Photonics Transceiver Architecture
127(1)
3.10.2 Performance
128(1)
Summary
129(1)
Exercises
129(1)
References
130(5)
Chapter 4 Processing of Integrated Waveguide Devices for Optical Network Using Different Technologies
135(38)
4.1 Fabrication and Characteristics of Silica (SiO2)/Silicon Oxynitride (SiON)-Based Devices
135(10)
4.1.1 Deposition of Thin Film SiON Layer by Using LPCVD
136(1)
4.1.2 Deposition of SiO2/SiON Layer by Using PECVD
137(1)
4.1.2.1 Silicon Dioxide (SiO2)
138(1)
4.1.2.2 Silicon Nitride
138(1)
4.1.2.3 SiON Layer
139(5)
4.1.3 Tuning of Refractive Index Using Thermooptic Effect
144(1)
4.1.4 Devices Fabricated and Demonstrated by Using SiO2/SiON Material
144(1)
4.1.5 Properties of SiO2/SiON
145(1)
4.2 Fabrication and Characteristics of SiO2/GeO2-SiO2 Waveguide Material
145(5)
4.2.1 Deposition of SiO2/GeO2-SiO2 Layer Using PECVD
146(1)
4.2.2 Deposition of SiO2/GeO2-SiO2 Material Using Flame Hydrolysis
147(1)
4.2.3 Tuning of Refractive Index Using Thermooptic Effect
148(1)
4.2.4 Devices Fabricated and Demonstrated by Previous Authors Using SiO2/GeO2-SiO2Material
149(1)
4.2.5 Properties of SiO2/GeO2-SiO2
149(1)
4.3 Fabrication and Characteristics of SOI Waveguide Material
150(3)
4.3.1 Fabrication of SOI Wafer
150(1)
4.3.1.1 BESOI Processing
150(1)
4.3.1.2 SIMOX Method
150(1)
4.3.2 Device Fabricated and Demonstrated by Previous Authors Using SOI Material
151(1)
4.3.3 Properties of SOI
152(1)
4.4 Fabrication and Characteristics of Ti: LiNbO3 Waveguide Material
153(6)
4.4.1 Processing of LiNbO3-Based Waveguide
153(1)
4.4.1.1 Thermal in Ti-Diffusion Method
153(4)
4.4.1.2 Proton Exchange Method
157(1)
4.4.2 Tuning of Refractive Index Using Electrooptic Effect
158(1)
4.4.3 Devices Fabricated and Demonstrated by Previous Authors Using LiNbO3 Material
158(1)
4.4.4 Properties of LiNbO3
158(1)
4.5 Fabrication and Characteristics of InP/GaAsInP Waveguide Materials
159(5)
4.5.1 Processing of InP/InGaAsP Waveguide
159(1)
4.5.1.1 Deposition of GaAsInP and InP Layers Using MBE Growth System
160(3)
4.5.1.2 InP/GaAsInP Waveguide Fabrication
163(1)
4.5.2 Tuning of Refractive Index of InP/GaAsInP Waveguide
163(1)
4.5.3 Devices Fabricated and Demonstrated by Previous Authors Using InP/GaAsInP Material
163(1)
4.5.4 Properties of InP/GaAsInP
164(1)
4.6 Fabrication and Characteristics of Polymeric Waveguide Material
164(3)
4.6.1 Fabrication of Polymeric Waveguides
165(1)
4.6.2 Tuning of Refractive Index Using Thermooptic Effect
166(1)
4.6.3 Devices Fabricated and Demonstrated by Previous Authors Using Polymer Technology
166(1)
4.6.4 Properties of Polymeric Material
167(1)
4.7 Comparative Study of Integrated Waveguide Materials
167(2)
Summary
169(1)
Exercises
169(1)
References
169(4)
Chapter 5 Data Link Control for Optical Network
173(40)
5.1 Frame Synchronization
173(2)
5.1.1 Asynchronous Transmission
173(1)
5.1.2 Synchronous Transmission
174(1)
5.2 Flow Control
175(4)
5.2.1 Stop and Wait Flow Control
175(1)
5.2.2 Sliding Window Flow Control
176(3)
5.3 Error Detection and Control
179(12)
5.3.1 Error Detection
179(1)
5.3.1.1 Vertical and Horizontal Redundancy Check
179(2)
5.3.1.2 Cyclic Redundancy Check
181(4)
5.3.2 Error Control
185(1)
5.3.2.1 Stop and Wait ARQ
186(2)
5.3.2.2 Go-Back-N ARQ
188(1)
5.3.2.3 SREJARQ
189(2)
5.4 High-Level Data Link Control (HDLC)
191(6)
5.4.1 Types of Station
191(1)
5.4.2 Types of Configurations
191(1)
5.4.3 Types of Data Transfer Modes
191(1)
5.4.4 HDLC Frame Format
192(2)
5.4.5 Operation of HDLC
194(1)
5.4.5.1 Initialization
194(1)
5.4.5.2 Data Transfer
195(1)
5.4.5.3 Disconnect
196(1)
5.4.6 Examples of HDLC Operations
196(1)
5.5 Other Link Control Protocol
197(11)
5.5.1 LAPB
197(1)
5.5.2 LAPD
198(1)
5.5.3 LLC/MAC
198(1)
5.5.4 LAPF
198(1)
5.5.5 ATM
199(1)
5.5.5.1 ATM Protocol
200(1)
5.5.5.2 ATM Logical Connections
201(5)
5.5.5.3 Transmission of ATM Cells
206(2)
Summary
208(1)
Exercises
208(2)
References
210(3)
Chapter 6 Data Communication Networks Having No Optical Transmission
213(24)
6.1 History and Background of Networking-Different Generations
213(1)
6.2 First Generation of Network
214(19)
6.2.1 Protocol Architectures
214(2)
6.2.2 Topologies
216(1)
6.2.2.1 Bus Topology
216(2)
6.2.2.2 Tree Topology
218(1)
6.2.2.3 Ring Topology
218(2)
6.2.2.4 Star Topology
220(1)
6.2.2.5 Mesh Topology
221(1)
6.2.3 Medium Access Control
221(1)
6.2.3.1 Round Robin
221(3)
6.2.3.2 Reservation
224(1)
6.2.3.3 Contention
225(4)
6.2.4 Logical Link Control
229(1)
6.2.5 Wireless LANs
230(1)
6.2.5.1 Medium Access Control (MAC)
231(1)
6.2.6 Asynchronous Transfer Mode (ATM) LAN
232(1)
Summary
233(1)
Exercises
233(2)
References
235(2)
Chapter 7 Fiber-Optic Network without WDM
237(18)
7.1 Bus Topology
237(5)
7.1.1 Fasnet
238(1)
7.1.2 Expressnet
239(2)
7.1.3 Distributed Queue Dual Bus (DQDB)
241(1)
7.2 Ring Topology: FDDI
242(3)
7.2.1 MAC Frame
243(1)
7.2.2 MAC Protocol of FDDI
244(1)
7.3 Star Topology
245(5)
7.3.1 Fibernet
246(2)
7.3.2 Fibernet-II
248(2)
7.4 Wavelength Routed Networks without WDM
250(2)
Summary
252(1)
Exercises
252(1)
References
253(2)
Chapter 8 Single-Hop and Multihop WDM Optical Networks
255(48)
8.1 Single-Hop Networks
255(5)
8.1.1 Characteristics of a Basic Single-Hop WDM Star Network
257(3)
8.2 Different Single-Hop Optical Networks
260(10)
8.2.1 SONATA
260(1)
8.2.2 LAMBDANET
261(1)
8.2.3 Rainbow
261(1)
8.2.3.1 Rainbow Protocol
262(1)
8.2.3.2 Model of Rainbow
263(6)
8.2.4 Fiber-Optic CrossConnect (FOX)-Based Single-Hop Network
269(1)
8.2.5 STARNET
269(1)
8.2.6 Other Experimental Single-Hop Systems
269(1)
8.3 Coordination Protocol for a Single-Hop System
270(7)
8.3.1 Non Pre-transmission Coordination
270(1)
8.3.1.1 Fixed Assignment
270(1)
8.3.1.2 Partial Fixed Assignment Protocols
271(1)
8.3.1.3 Random Access Protocol I
272(1)
8.3.1.4 Random Access Protocol II
272(1)
8.3.1.5 The PAC Optical Network
272(1)
8.3.2 Pre-transmission Coordination Protocols
273(1)
8.3.2.1 Partial Random Access Protocols
273(2)
8.3.2.2 Improved Random Access Protocols
275(1)
8.3.2.3 Receiver Collision Avoidance (RCA) Protocol
275(1)
8.3.2.4 Reservation Protocols
276(1)
8.4 Multihop Optical Network
277(15)
8.4.1 Optimal Virtual Topologies Using Optimization
279(1)
8.4.1.1 Link Flow
279(1)
8.4.1.2 Delay-Based Optimization
280(1)
8.4.2 Regular Structures
281(1)
8.4.2.1 ShuffleNet
281(3)
8.4.2.2 De Bruijn Graph
284(1)
8.4.2.3 Torus (MSN)
285(1)
8.4.2.4 Hypercube
286(1)
8.4.2.5 GEMNET
286(6)
8.5 SC Multihop Systems
292(3)
8.5.1 Channel Sharing in Shuffle Net
292(1)
8.5.2 Channel Sharing in GEMNET
293(2)
Summary
295(1)
Exercises
295(4)
References
299(4)
Chapter 9 Optical Access Architecture
303(1)
9.1 Performance Measures and Notation of Access Architecture
303(1)
9.1.1 Random-Access Methods
304(1)
9.1.1.1 ALOHA
305(2)
9.1.1.2 Slotted ALOHA
307(1)
9.1.2 Carrier Sense Multiple Access (CSMA)
308(1)
9.1.2.1 Non-Persistent CSMA
308(3)
9.1.2.2 Slotted Non-Persistent CSMA
311(2)
9.1.2.3 1-Persistent CSMA
313(4)
9.1.2.4 p-Persistent CSMA
317(1)
9.1.3 CSMA/CD: IEEE Standard 802.3
318(2)
9.1.3.1 Throughput Analysis for Non-Persistent CSMA/CD
320(2)
9.1.3.2 Throughput Analysis for 1-Persistent CSMA/CD
322(2)
9.1.4 Stability of CSMA and CSMA/CD
324(1)
9.1.5 Controlled-Access Schemes
325(1)
9.1.5.1 Token Ring: IEEE Standard 802.5
326(1)
9.1.5.2 Token Bus: IEEE Standard 802.4
327(3)
9.2 Optical Access Network
330(1)
9.2.1 Issues in Optical Access Architecture
331(1)
9.3 Simple Fiber-Optic Access Network Architectures
331(1)
9.4 Components of PON Technologies
332(2)
9.4.1 Optical Splitters/Couplers
332(1)
9.4.2 PON Topologies
333(1)
9.4.3 Burst-Mode Transceivers
334(1)
9.5 EPON Access Architecture
334(2)
9.5.1 Operation of EPON
334(2)
9.6 Multi-Point Control Protocol (MPCP)
336(3)
9.6.1 Discovery Processing
336(1)
9.6.2 Report Handling
337(1)
9.6.3 Gate Handling
338(1)
9.6.4 Clock Synchronization
338(1)
9.7 Dynamic Bandwidth Allocation (DBA) Algorithms in EPON
339(3)
9.7.1 IPACT
340(1)
9.7.2 Services
341(1)
9.8 IP-Based Services over EPON
342(4)
9.8.1 Slot-Utilization Problem
342(1)
9.8.2 Circuit Emulation (TDM over IP)
343(1)
9.8.3 Real-Time Video and VoIP
344(1)
9.8.4 Performance of CoS-Aware EPON
345(1)
9.8.5 Light-Load Penalty
345(1)
9.9 Other Types of PONs
346(8)
9.9.1 APON
346(1)
9.9.2 GFP-PON
347(1)
9.9.3 WDM-PON
347(1)
9.9.3.1 Need for WDM in PONs
347(1)
9.9.3.2 Arrayed Waveguide Grating (AWG)-Based WDM-PON
348(1)
9.9.3.3 WDM-PON Architectures
349(2)
9.9.3.4 Scalability of WDM-PON
351(1)
9.9.4 Deployment Model of WDM-PONS
352(1)
9.9.4.1 Open Access
352(2)
Summary
354(1)
Exercises
355(3)
References
358(3)
Index 361
Advances in Optical Networks and Components
Preface xix
Acknowledgments xxi
Author xxiii
Chapter 1 Optical Ring Metropolitan Area Networks
1(1)
1.1 Different MANs
1(1)
1.2 Metro WDM Networks
2(1)
1.2.1 WDM Ring Networks for MAN
2(1)
1.2.2 Metro-Edge Technology
3(1)
1.2.3 Traffic Grooming in SONET Ring Networks
4(1)
1.2.3.1 Node Architecture
4(1)
1.2.3.2 Single-Hop Grooming in SONET/WDM Ring
4(1)
1.2.3.3 Multi-Hop Grooming in SONET/WDM Ring
5(2)
1.2.4 Dynamic Grooming in SONET/WDM Ring
7(1)
1.2.5 Grooming in Interconnected SONET/WDM Rings
7(1)
1.3 Traffic Grooming in WDM Ring Networks
7(5)
1.3.1 Problem Definition
8(1)
1.3.2 Mathematical Formulation of Single-Hop Connections
8(1)
1.3.3 Mathematical Formulation of Multi-hop Method
9(2)
1.3.4 Heuristics-Based Simulated Annealing Algorithm for Single Hop
11(1)
1.4 Interconnected WDM Ring Networks
12(9)
1.4.1 Interconnected Rings
13(2)
1.4.2 Traffic Grooming in Interconnected Rings
15(6)
1.5 Packet Communication using Tunable Wavelength ADMs
21(7)
1.5.1 Protocol
22(2)
1.5.2 Algorithm of Virtual Path Creation and Assigning Wavelengths
24(1)
1.5.3 Priority Schemes
25(1)
1.5.4 Packet-Selection Protocols
25(2)
1.5.5 Implementation of Algorithm
27(1)
1.6 Online Connection Provisioning using ROADMs
28(4)
1.6.1 Tuning Constraint
29(1)
1.6.2 Problem Statement
30(1)
1.6.3 Heuristics
30(1)
1.6.4 Comparison of Heuristics Schemes using Numerical Examples
31(1)
Summary
32(1)
Exercises
33(2)
References
35(2)
Chapter 2 Queuing System and Its Interconnection with Other Networks
37(46)
2.1 Queuing Models
37(5)
2.1.1 FCFS System
38(2)
2.1.2 Representation of Queue Models
40(1)
2.1.3 Random Variables and Parameters
41(1)
2.2 Queues
42(21)
2.2.1 M/M/1 Queues
42(6)
2.2.2 M/M/1/K Queues
48(2)
2.2.3 M/M/m Queues
50(3)
2.2.4 M/M/∞ Queue System
53(1)
2.2.5 M/M/m/m Queue System
54(1)
2.2.6 M/G/1 Queues
55(4)
2.2.7 M/G/1 Queues with Vacations
59(4)
2.3 Networks of Queues
63(6)
2.4 Time Reversibility --- Burke's Theorem
69(3)
2.5 Interconnection with Other Networks
72(5)
2.5.1 Gateways
73(1)
2.5.2 Bridges
74(1)
2.5.2.1 Spanning Bridges
74(2)
2.5.2.2 Source Routing Bridges
76(1)
2.5.2.3 Quality of Bridge Services
76(1)
2.5.3 Routers
76(1)
2.5.4 Repeaters
77(1)
Summary
77(1)
Exercises
78(2)
References
80(3)
Chapter 3 Routing and Wavelength Assignment
83(58)
3.1 Light paths
83(1)
3.2 LP Formulation of RWA and Its Reduction
84(7)
3.2.1 Reduction of Size of LP Formulation
85(1)
3.2.2 Randomized Rounding
86(1)
3.2.3 Graph Coloring
87(2)
3.2.4 Analysis of ILP
89(2)
3.3 Routing
91(12)
3.3.1 Routing Algorithms
91(1)
3.3.1.1 Dijkstra's Algorithm
91(2)
3.3.1.2 Bellman-Ford Algorithm
93(2)
3.3.2 Routing Approaches
95(1)
3.3.2.1 Fixed Routing
95(2)
3.3.2.2 Fixed-Alternate Routing
97(2)
3.3.2.3 Flooding
99(1)
3.3.2.4 Adaptive Routing
100(1)
3.3.2.5 Fault-Tolerant Routing
101(1)
3.3.2.6 Randomized Routing
102(1)
3.4 WA Subproblem (Heuristics)
103(7)
3.4.1 Wavelength Search Algorithm
104(1)
3.4.1.1 Exhaustive Search
104(1)
3.4.1.2 Tabu Search
104(1)
3.4.1.3 Simulated Annealing
105(1)
3.4.1.4 Genetic Algorithms
106(1)
3.4.2 WA Heuristics
106(1)
3.4.2.1 Random WA(R)
106(1)
3.4.2.2 First-Fit (FF) Approach
107(1)
3.4.2.3 Least-Used (LU) Approach
107(1)
3.4.2.4 Most-Used (MU) Approach
107(1)
3.4.2.5 Min-Product (MP) Approach
107(1)
3.4.2.6 Least-Loaded (LL) Approach
107(1)
3.4.2.7 MAX-SUM (MS) Approach
108(1)
3.4.2.8 Relative Capacity Loss (RCL) Approach
109(1)
3.4.2.9 Distributed Relative Capacity Loss (DRCL) Approach
109(1)
3.5 Fairness Improvement
110(13)
3.5.1 Wavelength Reservation
111(1)
3.5.1.1 Forward Reservation
111(2)
3.5.1.2 Backward Reservation
113(4)
3.5.1.3 Congestion-Based Routing WRSV Method
117(1)
3.5.1.4 k-Neighborhood Routing
117(1)
3.5.2 WThr Protection
118(1)
3.5.3 Limited Alternate Routing
118(1)
3.5.4 Static Priority Method
118(1)
3.5.5 Dynamic Priority Method
119(4)
3.6 Mathematical Formulation of RWA
123(2)
3.6.1 Traffic Flow Constraints
124(1)
3.6.2 Wavelength Constraints
125(1)
3.7 Priority-Based RWA
125(7)
3.8 Comparative Study of Different RWA Algorithms on NSFNETT1 Backbone
132(2)
Summary
134(1)
Exercises
135(3)
References
138(3)
Chapter 4 Virtual Topology
141(36)
4.1 Virtual Topology Architecture
141(2)
4.1.1 General Problem Statement
142(1)
4.2 NSFNET Optical Backbone: Virtual Topology
143(10)
4.2.1 Formulation of Virtual Topology
146(3)
4.2.2 Algorithm
149(1)
4.2.2.1 Subproblems
149(1)
4.2.2.2 Simulated Annealing
150(1)
4.2.2.3 Flow-Deviation Algorithm
151(2)
4.3 Advanced Virtual Topology Optimization
153(8)
4.3.1 Problem Specification of LP
154(1)
4.3.1.1 Linear Formulation
154(1)
4.3.1.2 Variables
155(1)
4.3.1.3 Objective: Optimality Criterion
155(1)
4.3.1.4 Constraints
156(4)
4.3.2 Heuristic Approaches
160(1)
4.4 Network Design: Resource Budgeting and Cost Model
161(2)
4.4.1 Budgeting
161(2)
4.5 Reconfiguration of Virtual Topology
163(2)
4.5.1 Reconfiguration Algorithm
163(1)
4.5.2 NSFNET Virtual Topology Design
164(1)
4.6 Virtual-Topology Adaptation with Dynamic Traffic
165(6)
4.6.1 Problem Definition
165(5)
4.6.2 Adaptation with Minimal Light path Change
170(1)
Summary
171(1)
Exercises
172(1)
References
173(4)
Chapter 5 Wavelength Conversion in WDM Networks
177(24)
5.1 Basics of WC
178(2)
5.1.1 Wavelength Converters
178(1)
5.1.2 Switches
178(2)
5.2 Optical Network Design, Control, and Management with Wavelength Conversion
180(2)
5.2.1 Optical Network Design with Wavelength Converter
180(1)
5.2.2 Control of Optical Networks with Wavelength Converters
181(1)
5.2.3 Network Management
181(1)
5.3 Benefit Analysis of Wavelength Conversion
182(4)
5.3.1 A Probabilistic Approach to WC Benefits' Analysis
182(1)
5.3.2 A Review of Benefit-Analysis Studies
183(1)
5.3.2.1 Bounds on RWA Algorithms with and without Wavelength Converters
183(1)
5.3.2.2 Probabilistic Model Not Based on Link-Load Assumption
184(1)
5.3.2.3 Probabilistic Model Based on Link-Load Assumption
184(1)
5.3.2.4 Probabilistic Model for a Class of Networks
184(1)
5.3.2.5 Multi-Fiber Networks
185(1)
5.3.2.6 Sparse Wavelength Conversion
185(1)
5.3.2.7 Limited-Range WC
185(1)
5.3.3 Benefits of Sparse Conversion
185(1)
5.4 RWA with All the Nodes Fully Wavelength Convertible
186(3)
5.4.1 Fully Wavelength-Convertible Node Architecture
186(1)
5.4.2 Mathematical Formulation and Constraints
187(1)
5.4.3 Algorithm
188(1)
5.4.4 Simulation
189(1)
5.5 RWA of Sparse Wavelength Converter Placement Problem
189(5)
5.5.1 Analytical Model for the Estimation of Blocking Probability
189(2)
5.5.2 FAR-FF Algorithm
191(1)
5.5.3 LLR-FF Algorithm
192(1)
5.5.4 WMSL Algorithm
193(1)
5.6 Simulation of Benefits of Using Wavelength Converters
194(2)
Summary
196(1)
Exercises
197(1)
References
198(3)
Chapter 6 Traffic Grooming in Optical Networks
201(48)
6.1 Review of Traffic Grooming
201(1)
6.2 Static Traffic Grooming
202(20)
6.2.1 Problem Statement for Traffic Grooming
204(5)
6.2.2 Mathematical (ILP) Formulation of the Static Traffic-Grooming Problem
209(5)
6.2.3 Numerical Simulation Results from ILP Formulations
214(3)
6.2.4 Heuristic Technique
217(3)
6.2.5 Mathematical Formulation of Other Optimization Criteria
220(2)
6.3 Dynamic Traffic Grooming
222(8)
6.3.1 Provisioning Connections in Heterogeneous WDM Networks
222(6)
6.3.2 Illustrative Numerical Examples
228(2)
6.4 Adaptive Grooming (AG)
230(1)
6.4.1 Performance in Terms of Different Parameters
230(1)
6.5 Hierarchical Switching and Waveband Grooming
231(5)
6.5.1 Hybrid Node Architecture
232(3)
6.5.2 Issues and Problems
235(1)
6.6 Virtual Concatenation
236(2)
6.6.1 Virtual Concatenation Architecture
236(2)
6.7 RWA of Traffic Grooming Connections
238(4)
6.7.1 SOURCE_SWG Algorithm
239(1)
6.7.2 DES_SWG Algorithm
240(1)
6.7.3 Problem Formulation
240(2)
Summary
242(1)
Problems
242(3)
References
245(4)
Chapter 7 Survivability of Optical Networks
249(72)
7.1 Parameters for Survival Schemes
250(1)
7.2 Fault Management
251(3)
7.2.1 Fault Management in Ring Topology
251(1)
7.2.1.1 Unidirectional Path-Switched Ring (UPSR)
252(1)
7.2.1.2 Bidirectional Line-Switched Ring (BLSR)
252(2)
7.2.2 Fault Management in WDM Mesh Networks
254(1)
7.3 Fault-Recovery Mechanism
254(3)
7.3.1 Path and Link Protection
255(1)
7.3.2 Dedicated Protection (1:1 and 1 + 1) and M:N Shared Protection
256(1)
7.4 Protection Issues Related to Ring Cover, Stacked Rings
257(1)
7.5 Survivable Routing and Wavelength Assignment (S-RWA)
258(7)
7.5.1 Algorithms for Computing Link-Disjoint Paths
258(2)
7.5.2 ILP of S-RWA for Static Traffic Demands
260(1)
7.5.2.1 ILP1: Dedicated Path Protection
261(1)
7.5.2.2 ILP2: Shared-Path Protection
262(1)
7.5.3 Maximizing Share Ability for Shared-Protection Schemes
263(1)
7.5.3.1 Backup Route Optimization
264(1)
7.5.3.2 Physical Constraint on Backup Route Optimization
264(1)
7.6 Dynamic Restoration
265(1)
7.7 Other Network Survivability Issues
266(4)
7.7.1 Service Availability
266(1)
7.7.2 Availability Study
267(1)
7.7.2.1 Network Component Availability
267(1)
7.7.2.2 End-to-End Path Availability
268(1)
7.7.2.3 Availability of Dedicated Path-Protected Connection
268(1)
7.7.2.4 Availability in Backup Sharing
268(2)
7.8 Dynamic Routing and Wavelength Assignment under Protection
270(12)
7.8.1 Protection Schemes in Alternate Path Routing and Wavelength Assignment
270(1)
7.8.1.1 Shared protection
270(2)
7.8.1.2 Restricted Shared Protection
272(2)
7.8.2 Routing and Wavelength Assignment Based on Wavelength Converter under Protection
274(3)
7.8.3 Traffic Grooming-Based RWA under Protection Tree
277(1)
7.8.3.1 Problem Formulation
278(2)
7.8.3.2 SOURCE_SWG
280(1)
7.8.3.3 DES_SWG Algorithm
280(1)
7.8.3.4 Analytical Model for Blocking Probability Analysis under Protection Tree
280(2)
7.9 Service Reliability and Restorability
282(3)
7.9.1 Service Reliability Disruption Rate
282(1)
7.9.2 Restoration Time
283(1)
7.9.3 Service Restorability
283(1)
7.9.4 Estimation of Reliability of Protection in NSFNET 71 Backbone
283(2)
7.10 Multicast Trees for Protection of WDM Mesh Network
285(6)
7.10.1 Light-Tree for Unicast Traffic
285(1)
7.10.1.1 Layered-Graph Model
286(1)
7.10.2 Steiner Trees
287(1)
7.10.2.1 General Problem Statement of light-Trees for Unicast Traffic
287(1)
7.10.2.2 Formulation of the Optimization Problem: Unicast Traffic
287(4)
7.11 Light-Trees for Broadcast Traffic
291(2)
7.11.1 General Problem Statement
291(1)
7.11.2 Formulation of the Optimization Problem: Broadcast Traffic
291(2)
7.12 Light-Trees for Multicast Traffic
293(8)
7.12.1 General Problem Statement
293(1)
7.12.2 Problem Formulation for a Network with Converters
293(3)
7.12.3 Variation of Problem Formulation with No Converters
296(1)
7.12.4 Variation of Problem Formulation with Fractional-Capacity Sessions
297(1)
7.12.5 Variation of Problem Formulation with Splitters Constraints
298(2)
7.13.6 Simulation in Sample Network for Multicast Transmission
300(1)
7.13 Multicast Tree Protection
301(9)
7.13.1 Protection Schemes
301(1)
7.13.2 General Problem Statement
302(1)
7.13.2.1 Problem Formulation for a Network without A Continuity
303(3)
7.13.2.2 Problem Formulation for a Network with X Continuity
306(2)
7.13.3 Network Having Protection Based on Light-Trees
308(1)
7.13.4 Other Protection Schemes
308(2)
7.14 Protection of Traffic Grooming-Based Optical Network
310(3)
7.14.1 Protection-at-Lightpath (PAL) Level
311(1)
7.14.2 Mixed Protection-at-Connection (MPAC) Level
312(1)
7.14.3 Separate Protection-at-Connection (SPAC) Level
312(1)
Summary
313(1)
Exercises
314(3)
References
317(4)
Chapter 8 Restoration Schemes in the Survivability of Optical Networks
321(30)
8.1 Restoration Networks
322(1)
8.1.1 Ring Topology
322(1)
8.1.2 Mesh Topology Restoration
322(1)
8.2 Parameters Considered in Restoration
323(3)
8.2.1 Disruption Rate
323(1)
8.2.2 Restoration Time
323(1)
8.2.3 Restoration Speed
323(1)
8.2.4 Capacity Efficiency
324(1)
8.2.5 Resource Success Time
325(1)
8.2.6 Availability
325(1)
8.2.7 End-to-End Path Availability
325(1)
8.2.8 Reliability
326(1)
8.3 Restoration Schemes for Mesh Topology
326(15)
8.3.1 Path Restoration Routing Problem
327(3)
8.3.2 Operation Flow
330(2)
8.3.3 Restoration Problem
332(1)
8.3.3.1 Maximum Restoration Problem
332(1)
8.3.3.2 Restoration Route (Alternate Path) Search Procedure
333(1)
8.3.3.3 Link Capacity Control Procedure
333(1)
8.3.3.4 Concurrent Contention-Locking Procedure
334(1)
8.3.3.5 Optimization Algorithm
335(6)
8.4 Restoration Activation Architectures
341(6)
8.4.1 Sequential Activation Architecture
341(1)
8.4.2 Parallel Activation Architecture
342(1)
8.4.2.1 Message Processing and Exchange Reduction
343(1)
8.4.2.2 Cross-Connect Reduction
344(1)
8.4.2.3 Dedicated Signaling Channels
344(1)
8.4.3 Optimization Performance of Restoration Approaches
345(1)
8.4.3.1 Centralized Algorithms
346(1)
8.4.4 Scalability and Application to Service Layer Restoration
346(1)
8.4.4.1 Call Admission Control for Restorable Connections
346(1)
Exercises
347(1)
References
348(3)
Chapter 9 Network Reliability and Security
351(52)
9.1 Connectivity Using Redundancy
351(2)
9.1.1 Min-Cut Max-Flow Theorem
352(1)
9.1.2 The Cut-Saturation Algorithm
353(1)
9.2 Probability of Connectivity
353(3)
9.2.1 Node Pair Failure Probability
354(2)
9.3 Reliability Model
356(12)
9.3.1 Reliability Function
356(2)
9.3.2 Reliability Measures
358(1)
9.3.3 Availability Function
358(1)
9.3.4 Series Network
359(1)
9.3.5 Parallel Network
360(1)
9.3.6 Reliability Improvement Techniques
361(1)
9.3.7 Availability Performance
362(3)
9.3.8 The Self-Heal Technique
365(1)
9.3.9 Fail-Safe Fiber-Optic Nodes
366(2)
9.4 Network Security
368(6)
9.4.1 Network Security Problems
369(1)
9.4.1.1 Threats
369(1)
9.4.2 Data Encryption
370(1)
9.4.2.1 Basic Concepts
371(1)
9.4.2.2 Transposition Ciphers
372(1)
9.4.2.3 Substitution Ciphers
373(1)
9.5 Data Encryption Standards (DES)
374(17)
9.5.1 Product Cipher
375(1)
9.5.2 Block Ciphers
375(1)
9.5.3 The DES Algorithm
376(9)
9.5.4 Public Key Cryptography
385(1)
9.5.5 Congruences: Modular Arithmetic
386(3)
9.5.6 The Rivest-Shamir-Adleman (RSA) Algorithm
389(2)
9.5.7 Comparison of Cryptographic Techniques
391(1)
9.6 Optical Cryptography
391(5)
9.6.1 Confidentiality
391(2)
9.6.2 OCDMA-Based Encoder/Decoder
393(1)
9.6.3 DSP-Based Approach
394(1)
9.6.4 Spread Spectrum-Based Approach
394(2)
Summary
396(1)
Exercises
397(2)
References
399(4)
Chapter 10 FTTH Standards, Deployments, and Issues
403(10)
10.1 PONs
403(5)
10.1.1 Standards of Different PON Technology
404(1)
10.1.2 EPON
404(2)
10.1.3 APON
406(1)
10.1.4 Generalized Framing Procedure PON (GPON)
407(1)
10.1.5 WDM-PON
408(1)
10.2 Hybrid PON
408(2)
10.2.1 Success-HPON
408(1)
10.2.2 Success DRA
408(2)
10.3 Open Research Issues
410(1)
10.3.1 Issues in EPON
410(1)
10.3.2 Issues in Large-Scale IP Video Networks
410(1)
10.3.3 Issues in Integrated ONU/Wireless Base Station/Home Gateway/DSLAM
410(1)
10.3.4 Issues in Hybrid TDM/WDM-PON Architectures
410(1)
10.3.5 Issues in WDM-PON
410(1)
Exercises
411(1)
References
411(2)
Chapter 11 Math Lab Codes for Optical Fiber Communication System
413(26)
11.1 Specification of Design of Optical Fibers
413(3)
11.1.1 Material specification
413(1)
11.1.2 Transmission Specifications
414(1)
11.1.3 Environmental Specifications
415(1)
11.2 Math Lab Codes for Design of Optical Fibers
416(7)
11.2.1 Codes for Program of the Design of Optical Fibers
416(2)
11.2.2 Codes for Design of Standard Single-Mode Fibers
418(1)
11.2.3 Codes of Nonzero Dispersion-Shifted Fibers
419(2)
11.2.4 Codes of split-step Fourier method (SSFM)
421(1)
11.2.5 Codes for Optical Fiber Transmission System
422(1)
11.3 MATLAB Codes for Optical Transmission System with Mux and Demux
423(8)
11.3.1 Modeling of Nonlinear Optical Fiber Transmission Systems
425(2)
11.3.2 Phase Modulation Model and Intensity Modulation
427(3)
11.3.3 Math Lab Codes for Raman Amplification and Split-Step Fourier Method
430(1)
11.4 Modeling of Optically Amplified Transmission System and BER
431(5)
11.4.1 Propagation of Optical Signals over a Single-Mode Optical Fiber-SSMF
433(1)
11.4.2 BER Evaluation
434(2)
Summary
436(1)
Exercises
436(1)
References
437(2)
Index 439
Partha Pratim Sahu