Foreword |
|
xv | |
Preface |
|
xix | |
Acknowledgments |
|
xxi | |
|
|
xxiii | |
|
The Global Spatial Data Model (GSDM) Defined |
|
|
1 | (18) |
|
|
1 | (1) |
|
|
2 | (15) |
|
The Functional Model Component |
|
|
3 | (3) |
|
Computational Designations |
|
|
6 | (3) |
|
Algorithm for Functional Model |
|
|
9 | (5) |
|
The Stochastic Model Component |
|
|
14 | (1) |
|
The GSDM Covariance Matrices |
|
|
14 | (2) |
|
|
16 | (1) |
|
BURKORD™: Software and Database |
|
|
17 | (1) |
|
|
17 | (1) |
|
|
18 | (1) |
|
Spatial Data and the Science of Measurement |
|
|
19 | (16) |
|
|
19 | (1) |
|
|
19 | (1) |
|
Coordinate Systems Give Meaning to Spatial Data |
|
|
20 | (4) |
|
|
22 | (2) |
|
Spatial Data Visualization Is Well Defined |
|
|
24 | (1) |
|
Direct and Indirect Measurements Contain Uncertainty |
|
|
24 | (1) |
|
Fundamental Physical Constants Are Held Exact |
|
|
24 | (1) |
|
Measurements Contain Errors |
|
|
25 | (1) |
|
Measurements Used to Create Spatial Data Include |
|
|
25 | (4) |
|
|
25 | (1) |
|
|
25 | (1) |
|
Electronic Distance Measurement |
|
|
26 | (1) |
|
|
26 | (1) |
|
|
26 | (1) |
|
|
27 | (1) |
|
|
27 | (1) |
|
Errorless Spatial Data Must Also Be Accommodated |
|
|
28 | (1) |
|
Primary Spatial Data Are Based Upon Measurements and Errorless Quantities |
|
|
29 | (2) |
|
Observations and Measurements |
|
|
30 | (1) |
|
Derived Spatial Data Are Computed from Primary Spatial Data |
|
|
31 | (1) |
|
Establishing and Preserving the Value of Spatial Data |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
33 | (2) |
|
Summary of Mathematical Concepts |
|
|
35 | (44) |
|
|
35 | (1) |
|
|
36 | (6) |
|
|
36 | (1) |
|
|
36 | (1) |
|
|
36 | (1) |
|
|
37 | (1) |
|
|
38 | (1) |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
40 | (1) |
|
|
40 | (1) |
|
Multiplication and Division |
|
|
40 | (2) |
|
|
42 | (1) |
|
|
43 | (1) |
|
|
43 | (1) |
|
Axioms of Equality (for real numbers A, B, and C) |
|
|
44 | (1) |
|
Axioms of Addition (for real numbers A, B, and C) |
|
|
44 | (1) |
|
Axioms of Multiplication (for real numbers A, B, and C) |
|
|
44 | (1) |
|
|
44 | (1) |
|
|
44 | (3) |
|
|
45 | (1) |
|
|
45 | (1) |
|
|
45 | (1) |
|
|
45 | (1) |
|
|
45 | (1) |
|
|
45 | (1) |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
47 | (1) |
|
|
47 | (1) |
|
|
47 | (1) |
|
|
47 | (1) |
|
|
47 | (1) |
|
|
47 | (1) |
|
|
47 | (3) |
|
|
48 | (1) |
|
|
48 | (1) |
|
|
48 | (1) |
|
|
48 | (1) |
|
|
48 | (1) |
|
|
48 | (1) |
|
Equation of a Plane in Space |
|
|
48 | (1) |
|
Equation of a Sphere in Space |
|
|
48 | (1) |
|
Equation of an Ellipsoid Centered on the Origin |
|
|
49 | (1) |
|
|
49 | (1) |
|
|
50 | (1) |
|
|
50 | (2) |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
52 | (1) |
|
|
52 | (3) |
|
|
55 | (2) |
|
|
55 | (2) |
|
Differential Calculus Equations |
|
|
57 | (1) |
|
Integral Calculus Equations |
|
|
57 | (1) |
|
Probability and Statistics |
|
|
57 | (9) |
|
|
57 | (1) |
|
|
58 | (1) |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
61 | (1) |
|
|
61 | (1) |
|
|
61 | (1) |
|
|
61 | (1) |
|
|
61 | (2) |
|
Computing Standard Deviations |
|
|
63 | (1) |
|
Standard Deviation of the Mean |
|
|
63 | (1) |
|
|
64 | (1) |
|
|
64 | (1) |
|
|
65 | (1) |
|
|
66 | (1) |
|
|
66 | (1) |
|
|
66 | (1) |
|
|
67 | (6) |
|
|
73 | (1) |
|
|
73 | (3) |
|
|
75 | (1) |
|
Applications to the Global Spatial Data Model (GSDM) |
|
|
76 | (1) |
|
|
76 | (3) |
|
Geometrical Models for Spatial Data Computations |
|
|
79 | (38) |
|
|
79 | (1) |
|
|
80 | (3) |
|
Two-Dimensional Cartesian Models |
|
|
83 | (2) |
|
Math/Science Reference System |
|
|
83 | (1) |
|
Engineering/Surveying Reference System |
|
|
84 | (1) |
|
|
85 | (6) |
|
|
85 | (1) |
|
|
85 | (1) |
|
|
86 | (2) |
|
Line-Line: One Solution or No Solution if Lines Are Parallel |
|
|
88 | (1) |
|
Line-Circle: May Have Two Solutions, One Solution, or No Solution |
|
|
88 | (1) |
|
Circle-Circle: May Have Two Solutions, One Solution, or No Solution |
|
|
89 | (1) |
|
|
89 | (1) |
|
|
90 | (1) |
|
|
91 | (7) |
|
|
91 | (1) |
|
|
92 | (1) |
|
|
93 | (2) |
|
|
95 | (1) |
|
|
96 | (1) |
|
|
96 | (1) |
|
|
97 | (1) |
|
|
98 | (6) |
|
|
98 | (3) |
|
Intersecting a Line with a Spiral |
|
|
101 | (1) |
|
Computing Area Adjacent to a Spiral |
|
|
102 | (2) |
|
|
104 | (2) |
|
|
106 | (3) |
|
Three-Dimensional Models for Spatial Data |
|
|
109 | (5) |
|
Volume of Rectangular Solid |
|
|
109 | (1) |
|
|
109 | (1) |
|
|
110 | (1) |
|
|
111 | (2) |
|
Traditional 3-D Spatial Data Models |
|
|
113 | (1) |
|
|
114 | (1) |
|
|
114 | (3) |
|
|
117 | (16) |
|
|
117 | (1) |
|
|
117 | (1) |
|
|
118 | (4) |
|
|
122 | (6) |
|
Religion, Science, and Geodesy |
|
|
123 | (1) |
|
|
123 | (1) |
|
|
123 | (1) |
|
|
124 | (1) |
|
|
124 | (1) |
|
|
125 | (1) |
|
|
125 | (1) |
|
|
125 | (1) |
|
|
126 | (1) |
|
|
126 | (1) |
|
|
126 | (1) |
|
Jean-Dominique and Jacques Cassini |
|
|
127 | (1) |
|
French Academy of Science |
|
|
127 | (1) |
|
|
128 | (1) |
|
Developments during the Nineteenth and Twentieth Centuries |
|
|
128 | (2) |
|
Forecast for the Twenty-first Century |
|
|
130 | (1) |
|
|
131 | (2) |
|
|
133 | (50) |
|
|
133 | (1) |
|
The Two-dimensional Ellipse |
|
|
134 | (6) |
|
The Three-Dimensional Ellipsoid |
|
|
140 | (2) |
|
Ellipsoid Radii of Curvature |
|
|
140 | (1) |
|
Normal Section Radius of Curvature |
|
|
141 | (1) |
|
|
141 | (1) |
|
|
142 | (1) |
|
|
142 | (1) |
|
Geocentric and Geodetic Coordinates |
|
|
142 | (1) |
|
|
143 | (1) |
|
|
144 | (2) |
|
|
144 | (1) |
|
Once-Through Vincenty Method |
|
|
145 | (1) |
|
Example of BK1 Transformation |
|
|
146 | (1) |
|
Example of BK2 Transformation---Iteration |
|
|
147 | (1) |
|
Example of BK2 Transformation---Vincenty's Method (same point) |
|
|
148 | (7) |
|
|
149 | (3) |
|
|
152 | (1) |
|
|
152 | (2) |
|
|
154 | (1) |
|
|
155 | (7) |
|
|
155 | (2) |
|
|
157 | (1) |
|
|
158 | (3) |
|
|
161 | (1) |
|
|
161 | (1) |
|
Geodetic Position Computation: Forward and Inverse |
|
|
162 | (18) |
|
|
162 | (2) |
|
|
164 | (1) |
|
|
165 | (1) |
|
|
165 | (3) |
|
BK19: Numerical Integration |
|
|
168 | (4) |
|
Geodetic Position Computations Using State Plane Coordinates |
|
|
172 | (1) |
|
GSDM 3-D Geodetic Position Computations |
|
|
173 | (1) |
|
|
173 | (1) |
|
|
174 | (1) |
|
GSDM Inverse Example: New Orleans to Chicago |
|
|
175 | (5) |
|
|
180 | (3) |
|
|
183 | (16) |
|
|
183 | (1) |
|
|
184 | (8) |
|
|
184 | (1) |
|
North American Datum of 1927 (NAD27) |
|
|
185 | (1) |
|
North American Datum of 1983 (NAD83) |
|
|
186 | (1) |
|
World Geodetic System 1984 (WGS84) |
|
|
187 | (1) |
|
International Terrestrial Reference Frame (ITRF) |
|
|
188 | (2) |
|
High Accuracy Reference Network (HARN) |
|
|
190 | (1) |
|
Continuously Operating Reference Station (CORS) |
|
|
191 | (1) |
|
|
192 | (2) |
|
Mean Sea Level Datum of 1929 (now NGVD29) |
|
|
193 | (1) |
|
International Great Lakes Datum |
|
|
193 | (1) |
|
North American Vertical Datum of 1988 |
|
|
194 | (1) |
|
|
194 | (1) |
|
|
195 | (2) |
|
|
195 | (1) |
|
|
195 | (1) |
|
|
196 | (1) |
|
|
|
|
196 | (1) |
|
Seven- (or Fourteen-) Parameter Transformation |
|
|
196 | (1) |
|
|
197 | (2) |
|
|
199 | (22) |
|
|
199 | (1) |
|
|
200 | (1) |
|
|
201 | (3) |
|
|
202 | (1) |
|
|
202 | (1) |
|
|
202 | (1) |
|
|
202 | (1) |
|
|
202 | (1) |
|
|
203 | (1) |
|
|
203 | (1) |
|
|
203 | (1) |
|
|
203 | (1) |
|
Gravity and the Shape of the Geoid |
|
|
204 | (1) |
|
|
204 | (2) |
|
Measurements and Computations |
|
|
206 | (5) |
|
Interpolation and Extrapolation |
|
|
207 | (1) |
|
|
208 | (1) |
|
|
209 | (1) |
|
|
209 | (1) |
|
|
209 | (2) |
|
|
211 | (1) |
|
Use of Ellipsoid Heights in Place of Orthometric Heights |
|
|
211 | (2) |
|
The Need for Geoid Modeling |
|
|
213 | (3) |
|
Geoid Modeling and the GSDM |
|
|
216 | (2) |
|
|
218 | (2) |
|
|
220 | (1) |
|
Satellite Geodesy and Global Navigation Satellite Systems (GNSS) |
|
|
221 | (28) |
|
|
221 | (3) |
|
Brief History of Satellite Positioning |
|
|
224 | (3) |
|
|
227 | (3) |
|
|
227 | (1) |
|
|
228 | (1) |
|
|
229 | (1) |
|
|
230 | (4) |
|
|
232 | (1) |
|
|
233 | (1) |
|
|
234 | (1) |
|
|
235 | (1) |
|
|
235 | (1) |
|
|
235 | (1) |
|
|
235 | (1) |
|
|
236 | (9) |
|
|
237 | (1) |
|
|
238 | (1) |
|
|
239 | (1) |
|
|
239 | (1) |
|
|
239 | (1) |
|
|
239 | (1) |
|
|
239 | (1) |
|
|
240 | (1) |
|
|
241 | (1) |
|
|
242 | (3) |
|
The Future of Survey Control Networks |
|
|
245 | (2) |
|
|
247 | (2) |
|
Map Projections and State Plane Coordinates |
|
|
249 | (42) |
|
Introduction: Round Earth---Flat Map |
|
|
249 | (1) |
|
|
250 | (2) |
|
|
252 | (3) |
|
Permissible Distortion and Area Covered |
|
|
255 | (1) |
|
The U.S. State Plane Coordinate System (SPCS) |
|
|
256 | (6) |
|
|
257 | (1) |
|
|
257 | (1) |
|
|
258 | (3) |
|
Current Status: NAD83 State Plane Coordinate Systems |
|
|
261 | (1) |
|
|
261 | (1) |
|
|
261 | (1) |
|
|
262 | (4) |
|
|
262 | (1) |
|
|
263 | (2) |
|
|
265 | (1) |
|
|
266 | (1) |
|
|
266 | (1) |
|
Algorithms for Traditional Map Projections |
|
|
266 | (22) |
|
Lambert Conic Conformal Projection |
|
|
267 | (2) |
|
BK10 (Forward) Transformation on Lambert Conic Conformal Projection |
|
|
269 | (1) |
|
BK11 (Inverse) Transformation on Lambert Conic Conformal Projection |
|
|
270 | (1) |
|
Transverse Mercator Projection |
|
|
271 | (4) |
|
BK10 (Forward) Transformation for Transverse Mercator Projection |
|
|
275 | (2) |
|
BK11 (Inverse) Transformation for Transverse Mercator |
|
|
277 | (2) |
|
Oblique Mercator Projection |
|
|
279 | (4) |
|
BK10 (Forward) Transformation for Oblique Mercator Projection |
|
|
283 | (1) |
|
BK11 (Inverse) Transformation for Oblique Mercator Projection |
|
|
284 | (2) |
|
Low-Distortion Projections |
|
|
286 | (1) |
|
Lambert Conic Conformal Projection |
|
|
286 | (2) |
|
Transverse Mercator Projection |
|
|
288 | (1) |
|
Oblique Mercator Projection |
|
|
288 | (1) |
|
|
288 | (3) |
|
|
291 | (24) |
|
|
291 | (1) |
|
|
291 | (1) |
|
|
292 | (2) |
|
|
294 | (1) |
|
|
295 | (19) |
|
|
295 | (1) |
|
|
296 | (2) |
|
Spatial Data Components and Their Accuracy |
|
|
298 | (2) |
|
|
300 | (1) |
|
Observations, Measurements, and Error Propagation |
|
|
301 | (1) |
|
Finding the Uncertainty of Spatial Data Elements |
|
|
302 | (2) |
|
Using Points Stored in the X/Y/Z Database |
|
|
304 | (1) |
|
|
305 | (1) |
|
Control Values and Observed Vectors |
|
|
306 | (1) |
|
|
307 | (2) |
|
|
309 | (1) |
|
Network Accuracy and Local Accuracy |
|
|
309 | (5) |
|
|
314 | (1) |
|
|
315 | (14) |
|
|
315 | (2) |
|
|
317 | (3) |
|
|
317 | (1) |
|
|
317 | (3) |
|
|
320 | (2) |
|
|
322 | (1) |
|
Applications and Examples |
|
|
323 | (3) |
|
|
326 | (2) |
|
|
328 | (1) |
|
Appendix A: Rotation Matrix Derivation |
|
|
329 | (4) |
|
|
332 | (1) |
|
Appendix B: 1983 State Plane Coordinate System Constants |
|
|
333 | (8) |
|
Appendix C: Example Computation---Network Accuracy and Local Accuracy |
|
|
341 | (4) |
Index |
|
345 | |