Muutke küpsiste eelistusi

3-D Global Spatial Data Model: Foundation of the Spatial Data Infrastructure [Kõva köide]

  • Formaat: Hardback, 392 pages, kõrgus x laius: 235x156 mm, kaal: 680 g, 88 Illustrations, black and white
  • Ilmumisaeg: 01-Jan-2008
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1420063014
  • ISBN-13: 9781420063011
  • Kõva köide
  • Hind: 178,75 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
  • Formaat: Hardback, 392 pages, kõrgus x laius: 235x156 mm, kaal: 680 g, 88 Illustrations, black and white
  • Ilmumisaeg: 01-Jan-2008
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1420063014
  • ISBN-13: 9781420063011
Traditional methods for handling spatial data are encumbered by the assumption of separate origins for horizontal and vertical measurements. Modern measurement systems operate in a 3-D spatial environment. The 3-D Global Spatial Data Model: Foundation of the Spatial Data Infrastructure offers a new model for handling digital spatial data, the global spatial data model or GSDM. The GSDM preserves the integrity of three-dimensional spatial data while also providing additional benefits such as simpler equations, worldwide standardization, and the ability to track spatial data accuracy with greater specificity and convenience. This groundbreaking spatial model incorporates both a functional model and a stochastic model to connect the physical world to the ECEF rectangular system.

Combining horizontal and vertical data into a single, three-dimensional database, this authoritative monograph provides a logical development of theoretical concepts and practical tools that can be used to handle spatial data more efficiently. The book clearly describes procedures that can be used to handle both ECEF and flat-Earth rectangular components in the context of a rigorous global environment.

Arvustused

presents a new model for collecting, handling, manipulating, storing; and-using 3-D digital spatial data with associated concepts, theories, and equations offers quick and well-organized information just like a recipe for the surveyor and geodesist, while it provides future development of spatial data structures for GIS specialists.



PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING, July 2009

Foreword xv
Preface xix
Acknowledgments xxi
List of Abbreviations
xxiii
The Global Spatial Data Model (GSDM) Defined
1(18)
Introduction
1(1)
The GSDM
2(15)
The Functional Model Component
3(3)
Computational Designations
6(3)
Algorithm for Functional Model
9(5)
The Stochastic Model Component
14(1)
The GSDM Covariance Matrices
14(2)
The GSDM 3-D Inverse
16(1)
BURKORD™: Software and Database
17(1)
Summary
17(1)
References
18(1)
Spatial Data and the Science of Measurement
19(16)
Introduction
19(1)
Spatial Data Defined
19(1)
Coordinate Systems Give Meaning to Spatial Data
20(4)
Spatial Data Types
22(2)
Spatial Data Visualization Is Well Defined
24(1)
Direct and Indirect Measurements Contain Uncertainty
24(1)
Fundamental Physical Constants Are Held Exact
24(1)
Measurements Contain Errors
25(1)
Measurements Used to Create Spatial Data Include
25(4)
Taping
25(1)
Leveling
25(1)
Electronic Distance Measurement
26(1)
Angles
26(1)
GPS
26(1)
Photogrammetric Mapping
27(1)
Remote Sensing
27(1)
Errorless Spatial Data Must Also Be Accommodated
28(1)
Primary Spatial Data Are Based Upon Measurements and Errorless Quantities
29(2)
Observations and Measurements
30(1)
Derived Spatial Data Are Computed from Primary Spatial Data
31(1)
Establishing and Preserving the Value of Spatial Data
32(1)
Summary
33(1)
References
33(2)
Summary of Mathematical Concepts
35(44)
Introduction
35(1)
Conventions
36(6)
Numbers
36(1)
Fractions
36(1)
Decimal
36(1)
Sexagesimal System
37(1)
Binary System
38(1)
Conversions
38(1)
Coordinate Systems
39(1)
Significant Figures
40(1)
Addition and Subtraction
40(1)
Multiplication and Division
40(2)
Logic
42(1)
Arithmetic
43(1)
Algebra
43(1)
Axioms of Equality (for real numbers A, B, and C)
44(1)
Axioms of Addition (for real numbers A, B, and C)
44(1)
Axioms of Multiplication (for real numbers A, B, and C)
44(1)
Boolean Algebra
44(1)
Geometry
44(3)
Point
45(1)
Distance
45(1)
Dimension
45(1)
Line
45(1)
Plane
45(1)
Angle
45(1)
Circle
46(1)
Ellipse
46(1)
Radian
46(1)
Triangle
46(1)
Quadrilateral
47(1)
Rectangle
47(1)
Square
47(1)
Trapezoid
47(1)
Polygon
47(1)
Pythagorean Theorem
47(1)
Solid Geometry
47(3)
Sphere
48(1)
Ellipsoid
48(1)
Polyhedron
48(1)
Tetrahedron
48(1)
Pyramid
48(1)
Cube
48(1)
Equation of a Plane in Space
48(1)
Equation of a Sphere in Space
48(1)
Equation of an Ellipsoid Centered on the Origin
49(1)
Conic Sections
49(1)
Vectors
50(1)
Trigonometry
50(2)
Trigonometric Identities
51(1)
Law of Sines
51(1)
Law of Cosines
52(1)
Spherical Trigonometry
52(3)
Calculus
55(2)
Example
55(2)
Differential Calculus Equations
57(1)
Integral Calculus Equations
57(1)
Probability and Statistics
57(9)
Introduction
57(1)
Standard Deviation
58(1)
Measurement
59(1)
Errors
59(1)
Blunders
60(1)
Systematic Errors
60(1)
Random Errors
60(1)
Error Sources
61(1)
Personal
61(1)
Environmental
61(1)
Instrumental
61(1)
Accuracy and Precision
61(2)
Computing Standard Deviations
63(1)
Standard Deviation of the Mean
63(1)
Confidence Intervals
64(1)
Hypothesis Testing
64(1)
Matrix Algebra
65(1)
Models
66(1)
Functional Models
66(1)
Stochastic Models
66(1)
Error Propagation
67(6)
Error Ellipses
73(1)
Least Squares
73(3)
Linearization
75(1)
Applications to the Global Spatial Data Model (GSDM)
76(1)
References
76(3)
Geometrical Models for Spatial Data Computations
79(38)
Introduction
79(1)
Conventions
80(3)
Two-Dimensional Cartesian Models
83(2)
Math/Science Reference System
83(1)
Engineering/Surveying Reference System
84(1)
Coordinate Geometry
85(6)
Forward
85(1)
Inverse
85(1)
Intersections
86(2)
Line-Line: One Solution or No Solution if Lines Are Parallel
88(1)
Line-Circle: May Have Two Solutions, One Solution, or No Solution
88(1)
Circle-Circle: May Have Two Solutions, One Solution, or No Solution
89(1)
Perpendicular Offset
89(1)
Area by Coordinates
90(1)
Circular Curves
91(7)
Definitions
91(1)
Degree of Curve
92(1)
Elements and Equations
93(2)
Stationing
95(1)
Metric Considerations
96(1)
Area Formed by Curves
96(1)
Area of Unit Circle
97(1)
Spiral Curves
98(6)
Spiral Geometry
98(3)
Intersecting a Line with a Spiral
101(1)
Computing Area Adjacent to a Spiral
102(2)
Radial Surveying
104(2)
Vertical Curves
106(3)
Three-Dimensional Models for Spatial Data
109(5)
Volume of Rectangular Solid
109(1)
Volume of a Sphere
109(1)
Volume of a Cone
110(1)
Prismoidal Formula
111(2)
Traditional 3-D Spatial Data Models
113(1)
The 3-D GSDM
114(1)
References
114(3)
Overview of Geodesy
117(16)
Introduction
117(1)
Fields of Geodesy
117(1)
Goals of Geodesy
118(4)
Historical Perspective
122(6)
Religion, Science, and Geodesy
123(1)
Religion
123(1)
Science
123(1)
Degree Measurement
124(1)
Eratosthenes
124(1)
Poseidonius
125(1)
Caliph Abdullah al Mamun
125(1)
Gerardus Mercator
125(1)
Willebrord Snellius
126(1)
Jean Picard
126(1)
Isaac Newton
126(1)
Jean-Dominique and Jacques Cassini
127(1)
French Academy of Science
127(1)
Meter
128(1)
Developments during the Nineteenth and Twentieth Centuries
128(2)
Forecast for the Twenty-first Century
130(1)
References
131(2)
Geometrical Geodesy
133(50)
Introduction
133(1)
The Two-dimensional Ellipse
134(6)
The Three-Dimensional Ellipsoid
140(2)
Ellipsoid Radii of Curvature
140(1)
Normal Section Radius of Curvature
141(1)
Geometrical Mean Radius
141(1)
Rotational Ellipsoid
142(1)
Equation of Ellipsoid
142(1)
Geocentric and Geodetic Coordinates
142(1)
BK1 Transformation
143(1)
BK2 Transformation
144(2)
Iteration
144(1)
Once-Through Vincenty Method
145(1)
Example of BK1 Transformation
146(1)
Example of BK2 Transformation---Iteration
147(1)
Example of BK2 Transformation---Vincenty's Method (same point)
148(7)
Meridian Arc Length
149(3)
Length of a Parallel
152(1)
Surface Area of a Sphere
152(2)
Ellipsoid Surface Area
154(1)
The Geodetic Line
155(7)
Description
155(2)
Clairaut's Constant
157(1)
Geodetic Azimuths
158(3)
Target Height Correction
161(1)
Geodesic Correction
161(1)
Geodetic Position Computation: Forward and Inverse
162(18)
Puissant Forward (BK18)
162(2)
Puissant Inverse (BK19)
164(1)
Numerical Integration
165(1)
BK18 by Integration
165(3)
BK19: Numerical Integration
168(4)
Geodetic Position Computations Using State Plane Coordinates
172(1)
GSDM 3-D Geodetic Position Computations
173(1)
Forward (BK3)
173(1)
Inverse (BK4)
174(1)
GSDM Inverse Example: New Orleans to Chicago
175(5)
References
180(3)
Geodetic Datums
183(16)
Introduction
183(1)
Horizontal Datums
184(8)
Brief History
184(1)
North American Datum of 1927 (NAD27)
185(1)
North American Datum of 1983 (NAD83)
186(1)
World Geodetic System 1984 (WGS84)
187(1)
International Terrestrial Reference Frame (ITRF)
188(2)
High Accuracy Reference Network (HARN)
190(1)
Continuously Operating Reference Station (CORS)
191(1)
Vertical Datums
192(2)
Mean Sea Level Datum of 1929 (now NGVD29)
193(1)
International Great Lakes Datum
193(1)
North American Vertical Datum of 1988
194(1)
3-D Datums
194(1)
Datum Transformations
195(2)
NAD27 to NAD83(86)
195(1)
NAD83(86) to HPGN
195(1)
NGVD29 to NAVD88
196(1)
HTDP196
Software Sources
196(1)
Seven- (or Fourteen-) Parameter Transformation
196(1)
References
197(2)
Physical Geodesy
199(22)
Introduction
199(1)
Gravity
200(1)
Definitions
201(3)
Elevation (Generic)
202(1)
Equipotential Surface
202(1)
Level Surface
202(1)
Geoid
202(1)
Geopotential Number
202(1)
Dynamic Height
203(1)
Orthometric Height
203(1)
Ellipsoid Height
203(1)
Geoid Height
203(1)
Gravity and the Shape of the Geoid
204(1)
Laplace Correction
204(2)
Measurements and Computations
206(5)
Interpolation and Extrapolation
207(1)
Gravity
208(1)
Tide Readings
209(1)
Differential Levels
209(1)
Ellipsoid Heights
209(2)
Time
211(1)
Use of Ellipsoid Heights in Place of Orthometric Heights
211(2)
The Need for Geoid Modeling
213(3)
Geoid Modeling and the GSDM
216(2)
Using a Geoid Model
218(2)
References
220(1)
Satellite Geodesy and Global Navigation Satellite Systems (GNSS)
221(28)
Introduction
221(3)
Brief History of Satellite Positioning
224(3)
Modes of Positioning
227(3)
Elapsed Time
227(1)
Doppler Shift
228(1)
Interferometry
229(1)
Satellite Signals
230(4)
C/A Code
232(1)
Carrier Phase
233(1)
Differencing
234(1)
Single Differencing
235(1)
Double Differencing
235(1)
Triple Differencing
235(1)
RINEX
235(1)
Processing GPS Data
236(9)
Spatial Data Types
237(1)
Autonomous Processing
238(1)
Datum
239(1)
Units
239(1)
Display
239(1)
Time
239(1)
Vector Processing
239(1)
Multiple Vectors
240(1)
Traditional Networks
241(1)
Advanced Processing
242(3)
The Future of Survey Control Networks
245(2)
References
247(2)
Map Projections and State Plane Coordinates
249(42)
Introduction: Round Earth---Flat Map
249(1)
Projection Criteria
250(2)
Projection Figures
252(3)
Permissible Distortion and Area Covered
255(1)
The U.S. State Plane Coordinate System (SPCS)
256(6)
History
257(1)
Features
257(1)
NAD27 and NAD83
258(3)
Current Status: NAD83 State Plane Coordinate Systems
261(1)
Advantages
261(1)
Disadvantages
261(1)
Procedures
262(4)
Grid Azimuth
262(1)
Grid Distance
263(2)
Traverses
265(1)
Loop Traverse
266(1)
Point-to-Point Traverse
266(1)
Algorithms for Traditional Map Projections
266(22)
Lambert Conic Conformal Projection
267(2)
BK10 (Forward) Transformation on Lambert Conic Conformal Projection
269(1)
BK11 (Inverse) Transformation on Lambert Conic Conformal Projection
270(1)
Transverse Mercator Projection
271(4)
BK10 (Forward) Transformation for Transverse Mercator Projection
275(2)
BK11 (Inverse) Transformation for Transverse Mercator
277(2)
Oblique Mercator Projection
279(4)
BK10 (Forward) Transformation for Oblique Mercator Projection
283(1)
BK11 (Inverse) Transformation for Oblique Mercator Projection
284(2)
Low-Distortion Projections
286(1)
Lambert Conic Conformal Projection
286(2)
Transverse Mercator Projection
288(1)
Oblique Mercator Projection
288(1)
References
288(3)
Using Spatial Data
291(24)
Introduction
291(1)
Forces Driving Change
291(1)
Transition
292(2)
Consequences
294(1)
Spatial Data Accuracy
295(19)
Introduction
295(1)
Definitions
296(2)
Spatial Data Components and Their Accuracy
298(2)
But Everything Moves
300(1)
Observations, Measurements, and Error Propagation
301(1)
Finding the Uncertainty of Spatial Data Elements
302(2)
Using Points Stored in the X/Y/Z Database
304(1)
Example
305(1)
Control Values and Observed Vectors
306(1)
Blunder Checks
307(2)
Results
309(1)
Network Accuracy and Local Accuracy
309(5)
References
314(1)
Using the GSDM
315(14)
Introduction
315(2)
Features
317(3)
The Functional Model
317(1)
The Stochastic Model
317(3)
Database Issues
320(2)
Implementation Issues
322(1)
Applications and Examples
323(3)
WBK Software
326(2)
References
328(1)
Appendix A: Rotation Matrix Derivation
329(4)
References
332(1)
Appendix B: 1983 State Plane Coordinate System Constants
333(8)
Appendix C: Example Computation---Network Accuracy and Local Accuracy
341(4)
Index 345