Preface to the Second Edition |
|
xix | |
Preface to the First Edition |
|
xxi | |
Acknowledgments |
|
xxiii | |
Author |
|
xxv | |
List of Abbreviations |
|
xxvii | |
Introduction |
|
xxxi | |
Chapter 1 The Global Spatial Data Model (GSDM) Defined |
|
1 | (20) |
|
|
1 | (1) |
|
|
2 | (16) |
|
Functional Model Component |
|
|
3 | (2) |
|
Computational Designations |
|
|
5 | (5) |
|
Algorithm for Functional Model |
|
|
10 | (4) |
|
Stochastic Model Component |
|
|
14 | (1) |
|
The GSDM Covariance Matrices |
|
|
14 | (2) |
|
|
16 | (2) |
|
BURKORD™: Software and Database |
|
|
18 | (1) |
|
|
18 | (1) |
|
|
19 | (2) |
Chapter 2 Featuring the 3-D Global Spatial Data Model |
|
21 | (8) |
|
|
21 | (1) |
|
The GSDM Facilitates Existing Initiatives |
|
|
22 | (3) |
|
U.S. National Academy of Public Administration Reports |
|
|
22 | (1) |
|
National Oceanic and Atmospheric Administration |
|
|
23 | (1) |
|
Coalition of Geospatial Organizations |
|
|
24 | (1) |
|
|
25 | (1) |
|
|
25 | (1) |
|
|
25 | (1) |
|
Information Provided by the GSDM |
|
|
26 | (1) |
|
|
26 | (1) |
|
|
27 | (2) |
Chapter 3 Spatial Data and the Science of Measurement |
|
29 | (18) |
|
|
29 | (1) |
|
|
29 | (1) |
|
Coordinate Systems Give Meaning to Spatial Data |
|
|
30 | (4) |
|
|
32 | (2) |
|
Spatial Data Visualization Is Well Defined |
|
|
34 | (1) |
|
Direct and Indirect Measurements Contain Uncertainty |
|
|
34 | (1) |
|
Fundamental Physical Constants Are Held Exact |
|
|
34 | (1) |
|
Measurements/Observations Contain Errors |
|
|
35 | (1) |
|
Measurements Used to Create Spatial Data |
|
|
35 | (6) |
|
|
35 | (1) |
|
|
35 | (1) |
|
|
35 | (1) |
|
|
36 | (1) |
|
|
36 | (2) |
|
|
38 | (1) |
|
|
38 | (1) |
|
|
38 | (1) |
|
|
38 | (1) |
|
|
39 | (2) |
|
Sources of Primary Spatial Data |
|
|
41 | (1) |
|
Observations and Measurements |
|
|
41 | (1) |
|
|
42 | (1) |
|
Derived Spatial Data Are Computed from Primary Spatial Data |
|
|
42 | (1) |
|
Establishing and Preserving the Value of Spatial Data |
|
|
43 | (1) |
|
|
44 | (1) |
|
|
44 | (3) |
Chapter 4 Summary of Mathematical Concepts |
|
47 | (46) |
|
|
47 | (1) |
|
|
48 | (6) |
|
|
48 | (1) |
|
|
48 | (1) |
|
|
48 | (1) |
|
|
49 | (1) |
|
|
50 | (1) |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
52 | (3) |
|
|
52 | (1) |
|
Multiplication and Division |
|
|
53 | (1) |
|
Avoid Mistakes by Working with Coordinate Differences |
|
|
54 | (1) |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
55 | (1) |
|
Axioms of Equality (for Real Numbers A, B, and C) |
|
|
56 | (1) |
|
Axioms of Addition (for Real Numbers A, B, and C) |
|
|
56 | (1) |
|
Axioms of Multiplication (for Real Numbers A, B, and C) |
|
|
56 | (1) |
|
|
56 | (1) |
|
|
56 | (4) |
|
|
57 | (1) |
|
|
57 | (1) |
|
|
57 | (1) |
|
|
57 | (1) |
|
|
57 | (1) |
|
|
58 | (1) |
|
|
58 | (1) |
|
|
58 | (1) |
|
|
58 | (1) |
|
|
58 | (1) |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
60 | (2) |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
60 | (1) |
|
Equation of a Plane in Space |
|
|
60 | (1) |
|
Equation of a Sphere in Space |
|
|
61 | (1) |
|
Equation of an Ellipsoid Centered on the Origin |
|
|
61 | (1) |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
62 | (3) |
|
|
63 | (1) |
|
|
64 | (1) |
|
|
65 | (1) |
|
|
65 | (3) |
|
|
68 | (3) |
|
|
68 | (2) |
|
Differential Calculus Equations |
|
|
70 | (1) |
|
Integral Calculus Equations |
|
|
70 | (1) |
|
Probability and Statistics |
|
|
71 | (9) |
|
|
71 | (1) |
|
|
72 | (1) |
|
|
73 | (1) |
|
|
73 | (1) |
|
|
74 | (1) |
|
|
74 | (1) |
|
|
74 | (1) |
|
|
74 | (1) |
|
|
74 | (1) |
|
|
75 | (1) |
|
|
75 | (1) |
|
|
75 | (1) |
|
Computing Standard Deviations |
|
|
76 | (1) |
|
Standard Deviation of the Mean |
|
|
76 | (1) |
|
|
77 | (1) |
|
|
78 | (1) |
|
|
79 | (1) |
|
|
80 | (1) |
|
|
80 | (1) |
|
|
80 | (1) |
|
|
81 | (6) |
|
|
87 | (1) |
|
|
88 | (2) |
|
|
89 | (1) |
|
Procedure for Nonlinear Solution |
|
|
90 | (1) |
|
|
90 | (1) |
|
|
91 | (2) |
Chapter 5 Geometrical Models for Spatial Data Computations |
|
93 | (38) |
|
|
93 | (1) |
|
|
94 | (3) |
|
Two-Dimensional Cartesian Models |
|
|
97 | (2) |
|
Math/Science Reference System |
|
|
98 | (1) |
|
Engineering/Surveying Reference System |
|
|
98 | (1) |
|
|
99 | (7) |
|
|
99 | (1) |
|
|
100 | (1) |
|
|
100 | (4) |
|
Line-Line (One Solution or No Solution If Lines Are Parallel) |
|
|
102 | (1) |
|
Line-Circle (May Have Two Solutions, One Solution, or No Solution) |
|
|
102 | (1) |
|
Circle-Circle (May Have Two Solutions, One Solution, or No Solution) |
|
|
103 | (1) |
|
|
104 | (1) |
|
|
104 | (2) |
|
|
106 | (7) |
|
|
106 | (1) |
|
|
106 | (1) |
|
|
107 | (2) |
|
|
109 | (1) |
|
|
110 | (1) |
|
|
111 | (1) |
|
|
112 | (1) |
|
|
113 | (4) |
|
|
113 | (3) |
|
Intersecting a Line with a Spiral |
|
|
116 | (1) |
|
Computing Area Adjacent to a Spiral |
|
|
117 | (1) |
|
|
118 | (3) |
|
|
121 | (3) |
|
Three-Dimensional Models for Spatial Data |
|
|
124 | (4) |
|
Volume of a Rectangular Solid |
|
|
124 | (1) |
|
|
124 | (1) |
|
|
125 | (1) |
|
|
126 | (2) |
|
Traditional 3-D Spatial Data Models |
|
|
128 | (1) |
|
|
128 | (1) |
|
|
129 | (2) |
Chapter 6 Overview of Geodesy |
|
131 | (16) |
|
Introduction: Science and Art |
|
|
131 | (1) |
|
|
131 | (1) |
|
|
132 | (5) |
|
|
137 | (6) |
|
Religion, Science, and Geodesy |
|
|
138 | (1) |
|
|
139 | (1) |
|
|
139 | (1) |
|
|
140 | (1) |
|
|
140 | (1) |
|
|
140 | (1) |
|
|
141 | (1) |
|
|
141 | (1) |
|
|
141 | (1) |
|
Jean-Dominique and Jacques Cassini |
|
|
142 | (1) |
|
French Academy of Science |
|
|
142 | (1) |
|
|
143 | (1) |
|
Developments during the Nineteenth and Twentieth Centuries |
|
|
143 | (2) |
|
Forecast for the Twenty-First Century |
|
|
145 | (1) |
|
|
146 | (1) |
Chapter 7 Geometrical Geodesy |
|
147 | (48) |
|
|
147 | (2) |
|
The Two-Dimensional Ellipse |
|
|
149 | (5) |
|
The Three-Dimensional Ellipsoid |
|
|
154 | (1) |
|
Ellipsoid Radii of Curvature |
|
|
154 | (1) |
|
Normal Section Radius of Curvature |
|
|
155 | (1) |
|
|
155 | (1) |
|
|
155 | (2) |
|
|
155 | (1) |
|
Geocentric and Geodetic Coordinates |
|
|
156 | (1) |
|
|
157 | (1) |
|
|
158 | (11) |
|
|
158 | (1) |
|
Noniterative (Vincenty) Method |
|
|
159 | (1) |
|
Example of BK1 Transformation |
|
|
160 | (1) |
|
Example of BK2 Transformation-Iteration |
|
|
161 | (1) |
|
Example of BK2 Transformation-Vincenty's Method (Same Point) |
|
|
162 | (1) |
|
|
163 | (3) |
|
|
166 | (1) |
|
|
166 | (1) |
|
|
167 | (2) |
|
|
169 | (6) |
|
|
169 | (1) |
|
|
170 | (2) |
|
|
172 | (2) |
|
|
174 | (1) |
|
|
175 | (1) |
|
Geodetic Position Computation-Forward and Inverse |
|
|
175 | (18) |
|
|
176 | (1) |
|
|
177 | (1) |
|
|
178 | (1) |
|
|
178 | (3) |
|
|
181 | (4) |
|
Geodetic Position Computations Using State Plane Coordinates |
|
|
185 | (1) |
|
GSDM 3-D Geodetic Position Computations |
|
|
186 | (1) |
|
|
186 | (1) |
|
|
187 | (1) |
|
GSDM Inverse Example: New Orleans to Chicago |
|
|
188 | (5) |
|
|
193 | (2) |
Chapter 8 Geodetic Datums |
|
195 | (18) |
|
|
195 | (1) |
|
|
196 | (9) |
|
|
196 | (2) |
|
North American Datum of 1927 (NAD 27) |
|
|
198 | (1) |
|
North American Datum of 1983 (NAD 83) |
|
|
198 | (1) |
|
World Geodetic System 1984 |
|
|
199 | (1) |
|
International Terrestrial Reference Frame |
|
|
200 | (2) |
|
High Accuracy Reference Network-HARN |
|
|
202 | (2) |
|
Continuously Operating Reference Station-CORS |
|
|
204 | (1) |
|
|
205 | (1) |
|
|
205 | (2) |
|
Sea Level Datum of 1929 (now NGVD 29) |
|
|
205 | (1) |
|
International Great Lakes Datum |
|
|
206 | (1) |
|
North American Vertical Datum of 1988-NAVD 88 |
|
|
206 | (1) |
|
|
207 | (2) |
|
|
208 | (1) |
|
|
208 | (1) |
|
NAD 83 (xxxx) to NAD 83 (yyyy) |
|
|
208 | (1) |
|
|
208 | (1) |
|
|
208 | (1) |
|
|
208 | (1) |
|
7-(14-) Parameter Transformation |
|
|
209 | (1) |
|
|
209 | (1) |
|
|
210 | (3) |
Chapter 9 Physical Geodesy |
|
213 | (24) |
|
|
213 | (1) |
|
|
214 | (1) |
|
|
215 | (3) |
|
|
216 | (1) |
|
|
216 | (1) |
|
|
216 | (1) |
|
|
216 | (1) |
|
|
217 | (1) |
|
|
217 | (1) |
|
|
217 | (1) |
|
|
217 | (1) |
|
|
217 | (1) |
|
Gravity and the Shape of the Geoid |
|
|
218 | (1) |
|
|
219 | (2) |
|
Measurements and Computations |
|
|
221 | (4) |
|
Interpolation and Extrapolation |
|
|
221 | (1) |
|
|
222 | (1) |
|
|
223 | (1) |
|
|
223 | (1) |
|
|
224 | (1) |
|
|
225 | (1) |
|
Use of Ellipsoid Heights in Place of Orthometric Heights |
|
|
225 | (2) |
|
The Need for Geoid Modeling |
|
|
227 | (4) |
|
Geoid Modeling and the GSDM |
|
|
231 | (1) |
|
|
232 | (2) |
|
|
234 | (3) |
Chapter 10 Satellite Geodesy and Global Navigation Satellite Systems |
|
237 | (30) |
|
|
237 | (3) |
|
Brief History of Satellite Positioning |
|
|
240 | (4) |
|
|
244 | (3) |
|
|
244 | (1) |
|
|
244 | (2) |
|
|
246 | (1) |
|
|
247 | (4) |
|
|
249 | (1) |
|
|
250 | (1) |
|
|
251 | (1) |
|
|
252 | (1) |
|
|
252 | (1) |
|
|
252 | (1) |
|
|
252 | (1) |
|
|
253 | (9) |
|
|
254 | (1) |
|
|
255 | (1) |
|
|
256 | (1) |
|
|
257 | (2) |
|
|
259 | (1) |
|
|
259 | (3) |
|
The Future of Survey Control Networks-Has It Arrived? |
|
|
262 | (3) |
|
|
265 | (2) |
Chapter 11 Map Projections and State Plane Coordinates |
|
267 | (38) |
|
Introduction: Round Earth-Flat Map |
|
|
267 | (1) |
|
|
268 | (2) |
|
|
270 | (3) |
|
Permissible Distortion and Area Covered |
|
|
273 | (1) |
|
U.S. State Plane Coordinate System (SPCS) |
|
|
274 | (7) |
|
|
275 | (1) |
|
|
275 | (2) |
|
|
277 | (2) |
|
Current Status-NAD 83 SPCS |
|
|
279 | (2) |
|
|
280 | (1) |
|
|
280 | (1) |
|
|
281 | (4) |
|
|
281 | (1) |
|
|
281 | (3) |
|
|
284 | (1) |
|
|
285 | (1) |
|
|
285 | (1) |
|
Algorithms for Traditional Map Projections |
|
|
285 | (17) |
|
Lambert Conformal Conic Projection |
|
|
286 | (3) |
|
BK10 Transformation for Lambert Conformal Conic Projection |
|
|
288 | (1) |
|
BK11 Transformation for Lambert Conformal Conic Projection |
|
|
288 | (1) |
|
Transverse Mercator Projection |
|
|
289 | (8) |
|
BK10 Transformation for Transverse Mercator Projection |
|
|
292 | (2) |
|
BK11 Transformation for Transverse Mercator Projection |
|
|
294 | (3) |
|
Oblique Mercator Projection |
|
|
297 | (12) |
|
BK10 Transformation for Oblique Mercator Projection |
|
|
299 | (1) |
|
BK11 Transformation for Oblique Mercator Projection |
|
|
300 | (2) |
|
Low-Distortion Projection |
|
|
302 | (1) |
|
|
302 | (3) |
Chapter 12 Spatial Data Accuracy |
|
305 | (24) |
|
|
305 | (1) |
|
|
305 | (1) |
|
|
306 | (2) |
|
|
308 | (1) |
|
|
309 | (6) |
|
|
309 | (2) |
|
|
311 | (1) |
|
Absolute and Relative Quantities |
|
|
311 | (2) |
|
Spatial Data Types and Their Accuracy |
|
|
313 | (2) |
|
|
313 | (1) |
|
|
313 | (2) |
|
Observations, Measurements, and Error Propagation |
|
|
315 | (4) |
|
Finding the Uncertainty of Spatial Data Elements |
|
|
315 | (2) |
|
Using Points Stored in a X/Y/Z Database |
|
|
317 | (2) |
|
|
319 | (9) |
|
Control Values and Observed Vectors |
|
|
320 | (1) |
|
|
321 | (1) |
|
|
322 | (1) |
|
|
323 | (1) |
|
Network Accuracy and Local Accuracy |
|
|
323 | (5) |
|
|
328 | (1) |
Chapter 13 Using the GSDM to Compute a Linear Least Squares GNSS Network |
|
329 | (36) |
|
|
329 | (1) |
|
Parameters and Linearization |
|
|
329 | (1) |
|
|
330 | (1) |
|
Observations and Measurements |
|
|
330 | (1) |
|
Covariance Matrices and Weight Matrices |
|
|
331 | (1) |
|
Two Equivalent Adjustment Methods |
|
|
332 | (1) |
|
Formulations of Matrices-Indirect Observations |
|
|
333 | (3) |
|
Example GNSS Network Project in Wisconsin |
|
|
336 | (2) |
|
RINEX Data Used to Build the Wisconsin Network |
|
|
338 | (1) |
|
|
338 | (3) |
|
Building Matrices for a Linear Least Squares Solution |
|
|
341 | (4) |
|
|
341 | (2) |
|
|
343 | (1) |
|
|
343 | (2) |
|
|
345 | (19) |
|
Notes Pertaining to Adjustment |
|
|
364 | (1) |
|
|
364 | (1) |
Chapter 14 Computing Network Accuracy and Local Accuracy Using the Global Spatial Data Model |
|
365 | (14) |
|
|
365 | (1) |
|
|
366 | (1) |
|
Summary of Pertinent Concepts |
|
|
366 | (2) |
|
Detailed Example Based on Wisconsin Network |
|
|
368 | (8) |
|
|
376 | (1) |
|
|
376 | (3) |
Chapter 15 Using the GSDM-Projects and Applications |
|
379 | (68) |
|
|
379 | (2) |
|
|
381 | (3) |
|
|
381 | (1) |
|
|
381 | (3) |
|
|
384 | (1) |
|
|
385 | (2) |
|
Examples and Applications |
|
|
387 | (56) |
|
Example 1: Supplemental NMSU Campus Control Network |
|
|
387 | (13) |
|
Example 2: Hypothesis Testing |
|
|
400 | (1) |
|
Example 3: Using Terrestrial Observations in the GSDM |
|
|
401 | (6) |
|
Example 4: Using the GSDM to Develop a 2-D Survey Plat |
|
|
407 | (3) |
|
Example 5: New Mexico Initial Point and Principal Meridian |
|
|
410 | (7) |
|
Example 6: State Boundary between Texas and New Mexico along the Rio Grande River |
|
|
417 | (10) |
|
Example 7: in Wisconsin-Leveling in the Context of the GSDM (Example in Wisconsin) |
|
|
427 | (1) |
|
Example 8: Determining the NAVD 88 Elevation of HARN Station REILLY |
|
|
427 | (5) |
|
Example 9: Determining the Shadow Height at a Proposed NEXRAD Installation |
|
|
432 | (2) |
|
Example 10: Comparison of 3-D Computational Models |
|
|
434 | (4) |
|
Example 11: Underground Mapping |
|
|
438 | (2) |
|
Example 12: Laying Out a Parallel of Latitude Using the GSDM |
|
|
440 | (3) |
|
Analogous to Solar Method |
|
|
441 | (1) |
|
Analogous to Tangent-Offset Method |
|
|
442 | (1) |
|
The Future Will Be What We Make It |
|
|
443 | (2) |
|
|
445 | (2) |
Appendix A: Rotation Matrix Derivation |
|
447 | (4) |
Appendix B: 1983 State Plane Coordinate Zone Constants |
|
451 | (8) |
Appendix C: 3-D Inverse with Statistics |
|
459 | (2) |
Appendix D: Development of the Global Spatial Data Model (GSDM) |
|
461 | (4) |
Appendix E: Evolution of Meaning for Terms: Network Accuracy and Local Accuracy |
|
465 | (8) |
Index |
|
473 | |