Muutke küpsiste eelistusi

Abductive Inference Models for Diagnostic Problem-Solving Softcover reprint of the original 1st ed. 1990 [Pehme köide]

  • Formaat: Paperback / softback, 285 pages, kõrgus x laius: 235x155 mm, kaal: 462 g, XII, 285 p., 1 Paperback / softback
  • Sari: Symbolic Computation
  • Ilmumisaeg: 20-Nov-2012
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1461264502
  • ISBN-13: 9781461264507
Teised raamatud teemal:
  • Pehme köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 285 pages, kõrgus x laius: 235x155 mm, kaal: 462 g, XII, 285 p., 1 Paperback / softback
  • Sari: Symbolic Computation
  • Ilmumisaeg: 20-Nov-2012
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1461264502
  • ISBN-13: 9781461264507
Teised raamatud teemal:
This book is about reasoning with causal associations during diagnostic problem-solving. It formalizes several currently vague notions of abductive inference in the context of diagnosis. The result is a mathematical model of diagnostic reasoning called parsimonious covering theory. Within this diagnostic, problems and important relevant concepts are formally defined, properties of diagnostic problem-solving are identified and analyzed, and algorithms for finding plausible explanations in different situations are given along with proofs of their correctness. Another feature of this book is the integration of parsimonious covering theory and probability theory. Based on underlying cause-effect relations, the resulting probabilistic causal model generalized Bayesian classification to diagnostic problems where multiple disorders (faults) may occur simultaneously. Both sequential best-first search algorithms and parallel connectionist (neural network) algorithms for finding the most probable hypothesis are provided. This book should appeal to both theoretical researchers and practitioners. For researchers in artificial intelligence and cognitive science, it provides a coherent presentation of a new theory of diagnostic inference. For engineers and developers of automated diagnostic systems or systems solving other abductive tasks, the book may provide useful insights, guidance, or even directly workable algorithms.

Muu info

Springer Book Archives
1 Abduction and Diagnostic Inference.- 2 Computational Models for
Diagnostic Problem Solving.- 3 Basics of Parsimonious Covering Theory.- 4
Probabilistic Causal Model.- 5 Diagnostic Strategies in the Probabilistic
Causal Model.- 6 Causal Chaining.- 7 Parallel Processing for Diagnostic
Problem-Solving.- 8 Conclusion.