Muutke küpsiste eelistusi

Abstract Fractional Monotone Approximation, Theory and Applications 2022 ed. [Kõva köide]

  • Formaat: Hardback, 145 pages, kõrgus x laius: 235x155 mm, kaal: 412 g, XII, 145 p., 1 Hardback
  • Sari: Studies in Systems, Decision and Control 411
  • Ilmumisaeg: 12-Mar-2022
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030959422
  • ISBN-13: 9783030959425
  • Kõva köide
  • Hind: 132,08 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 155,39 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 145 pages, kõrgus x laius: 235x155 mm, kaal: 412 g, XII, 145 p., 1 Hardback
  • Sari: Studies in Systems, Decision and Control 411
  • Ilmumisaeg: 12-Mar-2022
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030959422
  • ISBN-13: 9783030959425
This book employs an abstract kernel fractional calculus with applications to Prabhakar and non-singular kernel fractional calculi. The results are univariate and bivariate. In the univariate case, abstract fractional monotone approximation by polynomials and splines is presented. In the bivariate case, the abstract fractional monotone constrained approximation by bivariate pseudo-polynomials and polynomials is given. This book’s results are expected to find applications in many areas of pure and applied mathematics, especially in fractional approximation and fractional differential equations. Other interesting applications are applied in sciences like geophysics, physics, chemistry, economics, and engineering. This book is appropriate for researchers, graduate students, practitioners, and seminars of the above disciplines.

Arvustused

The book is a very interesting contribution to the recent developments in fractional calculus, which is widely studied due to its numerous applications in many scientific fields. (Carlo Bardaro, Mathematical Reviews, September, 2023)

Basic abstract fractional monotone approximation.- Abstract bivariate left fractional monotone constrained approximation by pseudo-polynomials.- Conclusion.