Preface |
|
xiii | |
About the Author |
|
xvii | |
1 Preliminaries for Motor Control |
|
1 | (56) |
|
1.1 Basics of Electromagnetics |
|
|
1 | (18) |
|
|
1 | (2) |
|
1.1.2 Riemann Integral and Fundamental Theorem of Calculus |
|
|
3 | (3) |
|
|
6 | (3) |
|
|
9 | (3) |
|
|
12 | (1) |
|
1.1.6 Analogy of Ohm's Law |
|
|
13 | (1) |
|
|
14 | (4) |
|
|
18 | (1) |
|
1.2 Basics of DC Machines |
|
|
19 | (9) |
|
1.2.1 DC Machine Dynamics |
|
|
21 | (2) |
|
1.2.2 Field Weakening Control |
|
|
23 | (2) |
|
1.2.3 Four Quadrant Operation |
|
|
25 | (1) |
|
1.2.4 DC Motor Dynamics and Control |
|
|
25 | (3) |
|
1.3 Dynamical System Control |
|
|
28 | (21) |
|
1.3.1 Gain and Phase Margins |
|
|
30 | (1) |
|
|
31 | (3) |
|
|
34 | (3) |
|
|
37 | (2) |
|
1.3.5 PI Controller with Reference Model |
|
|
39 | (5) |
|
|
44 | (1) |
|
1.3.7 Variations of 2-DOF Structures |
|
|
45 | (1) |
|
1.3.8 Load Torque Observer |
|
|
46 | (1) |
|
1.3.9 Feedback Linearization |
|
|
47 | (2) |
|
|
49 | (1) |
|
|
50 | (7) |
2 Rotating Magnetic Field |
|
57 | (30) |
|
2.1 Magneto Motive Force and Inductance |
|
|
58 | (4) |
|
2.1.1 Single Phase Inductance |
|
|
59 | (2) |
|
2.1.2 Inductance of Three Phase Uniform Gap Machine |
|
|
61 | (1) |
|
|
62 | (6) |
|
2.2.1 Rotating Field Generation by Inverter |
|
|
64 | (1) |
|
2.2.2 High Order Space Harmonics |
|
|
65 | (3) |
|
2.3 Change of Coordinates |
|
|
68 | (12) |
|
2.3.1 Mapping into Stationary DQ Coordinate |
|
|
69 | (2) |
|
2.3.2 Mapping into Synchronous Frame |
|
|
71 | (2) |
|
2.3.3 Formulation via Matrices |
|
|
73 | (2) |
|
|
75 | (2) |
|
2.3.5 Transformation of Impedance Matrices |
|
|
77 | (3) |
|
2.4 PI Controller in Synchronous Frame |
|
|
80 | (3) |
|
|
83 | (1) |
|
|
84 | (3) |
3 Induction Motor Basics |
|
87 | (36) |
|
|
87 | (2) |
|
3.2 IM Operation Principle |
|
|
89 | (12) |
|
3.2.1 IM Equivalent Circuit |
|
|
90 | (3) |
|
|
93 | (3) |
|
|
96 | (3) |
|
3.2.4 Stable and Unstable Regions |
|
|
99 | (1) |
|
|
100 | (1) |
|
|
101 | (4) |
|
3.3.1 Inverse Gamma Equivalent Circuit |
|
|
103 | (2) |
|
|
105 | (5) |
|
|
107 | (3) |
|
|
110 | (6) |
|
|
112 | (3) |
|
|
115 | (1) |
|
|
116 | (3) |
|
3.6.1 Variable Voltage Control |
|
|
116 | (1) |
|
|
116 | (3) |
|
|
119 | (1) |
|
|
119 | (4) |
4 Dynamic Modeling of Induction Motors |
|
123 | (32) |
|
|
123 | (15) |
|
|
123 | (6) |
|
|
129 | (4) |
|
4.1.3 Transformation via Matrix Multiplications |
|
|
133 | (5) |
|
|
138 | (6) |
|
4.2.1 ODE Model with Current Variables |
|
|
138 | (1) |
|
4.2.2 IM ODE Model with Current-Flux Variables |
|
|
139 | (2) |
|
4.2.3 Alternative Derivations |
|
|
141 | (3) |
|
4.2.4 Steady State Models |
|
|
144 | (1) |
|
4.3 Power and Torque Equations |
|
|
144 | (6) |
|
|
150 | (1) |
|
|
151 | (4) |
5 Induction Motor Control |
|
155 | (46) |
|
5.1 Rotor Field Oriented Scheme |
|
|
156 | (9) |
|
5.2 Stator Field Oriented Scheme |
|
|
165 | (2) |
|
5.3 Field Weakening Control |
|
|
167 | (6) |
|
5.3.1 Current and Voltage Limits |
|
|
167 | (1) |
|
|
168 | (2) |
|
5.3.3 Torque and Power Maximizing Solutions |
|
|
170 | (3) |
|
5.4 IM Sensorless Control |
|
|
173 | (21) |
|
5.4.1 Voltage Model Estimator |
|
|
174 | (1) |
|
5.4.2 Current Model Estimator |
|
|
175 | (1) |
|
5.4.3 Closed-Loop MRAS Observer |
|
|
175 | (1) |
|
5.4.4 Dual Reference Frame Observer |
|
|
176 | (3) |
|
5.4.5 Full Order Observer |
|
|
179 | (2) |
|
5.4.6 Reduced Order Observer |
|
|
181 | (1) |
|
5.4.7 Sliding Mode Observer |
|
|
182 | (3) |
|
5.4.8 Reduced Order Observer by Harnefors |
|
|
185 | (2) |
|
5.4.9 Robust Sensorless Algorithm |
|
|
187 | (3) |
|
5.4.10 Relation between Flux and Current Errors |
|
|
190 | (4) |
|
|
194 | (2) |
|
|
196 | (5) |
6 Permanent Magnet AC Motors |
|
201 | (42) |
|
|
202 | (7) |
|
6.1.1 PMSM Torque Generation |
|
|
202 | (2) |
|
6.1.2 BLDCM Torque Generation |
|
|
204 | (5) |
|
6.1.3 Comparison between PMSM and BLDCM |
|
|
209 | (1) |
|
6.2 PMSM Dynamic Modeling |
|
|
209 | (20) |
|
|
209 | (4) |
|
6.2.2 SPMSM Voltage Equations |
|
|
213 | (5) |
|
6.2.3 IPMSM Dynamic Model |
|
|
218 | (7) |
|
6.2.4 Multiple Saliency Effect |
|
|
225 | (1) |
|
6.2.5 Multi-pole PMSM Dynamics and Vector Diagram |
|
|
226 | (3) |
|
6.3 PMSM Torque Equations |
|
|
229 | (1) |
|
6.4 PMSM Block Diagram and Control |
|
|
230 | (4) |
|
|
232 | (2) |
|
|
234 | (1) |
|
|
234 | (9) |
7 PMSM Control Methods |
|
243 | (38) |
|
|
243 | (3) |
|
7.1.1 Machine Sizes under Same Power Rating |
|
|
245 | (1) |
|
7.2 Current Voltage and Speed Limits |
|
|
246 | (4) |
|
7.2.1 Torque versus Current Angle |
|
|
248 | (2) |
|
7.3 Extending Constant Power Speed Range |
|
|
250 | (3) |
|
7.3.1 Torque Speed Profile |
|
|
251 | (2) |
|
7.4 Current Control Methods |
|
|
253 | (23) |
|
7.4.1 Maximum Torque per Ampere Control |
|
|
253 | (2) |
|
7.4.2 Transversal Intersection with Current Limit |
|
|
255 | (2) |
|
7.4.3 Maximum Power Control |
|
|
257 | (2) |
|
7.4.4 Maximum Torque per Voltage Control |
|
|
259 | (3) |
|
7.4.5 Combination of Maximum Power Control Methods |
|
|
262 | (2) |
|
7.4.6 Unity Power Factor Control |
|
|
264 | (3) |
|
7.4.7 Current Control Contour for SPMSM |
|
|
267 | (1) |
|
7.4.8 Properties when ψm = LdIs |
|
|
267 | (4) |
|
7.4.9 Per Unit Model of PMSM |
|
|
271 | (2) |
|
|
273 | (1) |
|
|
274 | (2) |
|
|
276 | (1) |
|
|
277 | (4) |
8 Magnetism and Motor Losses |
|
281 | (28) |
|
8.1 Soft and Hard Ferromagnetism |
|
|
281 | (12) |
|
|
283 | (1) |
|
8.1.2 Air Gap Field Determination |
|
|
283 | (2) |
|
8.1.3 Temperature Dependence and PM Demagnetization |
|
|
285 | (2) |
|
|
287 | (1) |
|
8.1.5 Skin Depth and Eddy Current Loss |
|
|
288 | (4) |
|
|
292 | (1) |
|
|
293 | (3) |
|
8.3 Loss Minimizing Control for IPMSMs |
|
|
296 | (9) |
|
8.3.1 PMSM Loss Equation and Flux Saturation |
|
|
297 | (2) |
|
8.3.2 Solution Search by Lagrange Equation |
|
|
299 | (2) |
|
8.3.3 LMC Based Controller and Experimental Setup |
|
|
301 | (2) |
|
8.3.4 Experimental Results |
|
|
303 | (2) |
|
|
305 | (2) |
|
|
307 | (2) |
9 PMSM Sensorless Control |
|
309 | (38) |
|
9.1 IPMSM Dynamics in a Misaligned Frame |
|
|
310 | (3) |
|
9.1.1 Different Derivation Using Matrices |
|
|
311 | (1) |
|
9.1.2 Dynamic Model for Sensorless Algorithm |
|
|
312 | (1) |
|
9.2 Back-EMF Based Angle Estimation |
|
|
313 | (18) |
|
9.2.1 Morimoto's Extended EMF Observer |
|
|
313 | (5) |
|
9.2.2 Ortega's Nonlinear Observer for Sensorless Control |
|
|
318 | (6) |
|
9.2.3 Bobtsov's Initial Parameter Estimator |
|
|
324 | (3) |
|
9.2.4 Comparison between Back EMF and Rotor Flux Estimate |
|
|
327 | (1) |
|
9.2.5 Starting Algorithm by Signal Injection |
|
|
328 | (3) |
|
9.3 Sensorless Control by Signal Injection |
|
|
331 | (9) |
|
9.3.1 Rotating Signal Injection in Stationary Frame |
|
|
332 | (1) |
|
9.3.2 Signal Injection in a Synchronous Frame |
|
|
333 | (3) |
|
9.3.3 PWM Level Square-Voltage Injection in Estimated Frame |
|
|
336 | (4) |
|
|
340 | (3) |
|
|
343 | (4) |
10 Pulse Width Modulation and Inverter |
|
347 | (38) |
|
10.1 Switching Function and Six Step Operation |
|
|
349 | (3) |
|
|
352 | (14) |
|
|
353 | (1) |
|
10.2.2 Injection of Third Order Harmonics |
|
|
354 | (1) |
|
10.2.3 Space Vector Modulation |
|
|
354 | (2) |
|
10.2.4 Sector Finding Algorithm |
|
|
356 | (2) |
|
10.2.5 Space Vector Waveform |
|
|
358 | (3) |
|
|
361 | (1) |
|
10.2.7 Overmodulation Methods |
|
|
362 | (4) |
|
10.3 Common Mode Current and Countermeasures |
|
|
366 | (2) |
|
10.4 Dead Time and Compensation |
|
|
368 | (3) |
|
10.5 Position and Current Sensors |
|
|
371 | (7) |
|
|
372 | (1) |
|
10.5.2 Resolver and R/D Converter |
|
|
373 | (3) |
|
10.5.3 Hall Current Sensor and Current Sampling |
|
|
376 | (2) |
|
|
378 | (2) |
|
|
380 | (5) |
11 Basics of Motor Design |
|
385 | (60) |
|
|
385 | (8) |
|
11.1.1 Full and Short Pitch Windings |
|
|
387 | (6) |
|
11.2 MMF with Slot Openings |
|
|
393 | (7) |
|
11.2.1 MMF with Current Harmonics |
|
|
396 | (4) |
|
11.3 Fractional Slot Machines |
|
|
400 | (9) |
|
11.3.1 Concentrated Winding on Segmented Core |
|
|
400 | (1) |
|
11.3.2 Feasible Slot-Pole Number Combination |
|
|
401 | (5) |
|
11.3.3 Torque-Producing Harmonic and Subharmonics |
|
|
406 | (3) |
|
11.4 Demagnetization Analysis |
|
|
409 | (3) |
|
11.4.1 PM Loss Influential Factors |
|
|
409 | (1) |
|
11.4.2 PM Loss and Demagnetization Analysis |
|
|
410 | (1) |
|
|
411 | (1) |
|
|
412 | (16) |
|
|
417 | (1) |
|
|
418 | (2) |
|
11.5.3 Radial Force Analysis |
|
|
420 | (6) |
|
11.5.4 Back Iron Height and Pole Numbers |
|
|
426 | (2) |
|
|
428 | (4) |
|
11.6.1 Switched Reluctance Motors |
|
|
428 | (2) |
|
11.6.2 Synchronous Reluctance Motors |
|
|
430 | (1) |
|
11.6.3 PM Assisted Synchronous Reluctance Machine |
|
|
430 | (2) |
|
11.7 Motor Types Depending on PM Arrangements |
|
|
432 | (5) |
|
11.7.1 SPMSM and Inset SPMSM |
|
|
432 | (3) |
|
|
435 | (1) |
|
11.7.3 Flux Concentrating PMSM |
|
|
435 | (1) |
|
11.7.4 Temperature Rise by Copper Loss |
|
|
436 | (1) |
|
|
437 | (4) |
|
|
441 | (4) |
12 EV Motor Design and Control |
|
445 | (44) |
|
12.1 Requirements of EV Motor |
|
|
446 | (2) |
|
|
448 | (4) |
|
12.2.1 Pole and Slot Numbers |
|
|
448 | (1) |
|
12.2.2 PM and Flux Barrier Arrangements |
|
|
449 | (3) |
|
12.3 PMSM Design for EV Based on FEA |
|
|
452 | (9) |
|
12.3.1 Flux Density and Back EMF Simulation |
|
|
452 | (2) |
|
12.3.2 Voltage Vector Calculation |
|
|
454 | (1) |
|
12.3.3 Flux Linkage Simulation and Inductance Calculation |
|
|
455 | (1) |
|
12.3.4 Method of Drawing Torque-Speed Curve |
|
|
456 | (5) |
|
12.4 Finite Element Analysis |
|
|
461 | (5) |
|
|
461 | (1) |
|
|
462 | (1) |
|
12.4.3 PM Demagnetization Analysis |
|
|
463 | (2) |
|
12.4.4 Mechanical Stress Analysis |
|
|
465 | (1) |
|
|
466 | (5) |
|
|
466 | (3) |
|
|
469 | (2) |
|
12.6 PMSM Control in Practice |
|
|
471 | (12) |
|
12.6.1 Coil Resistance Measurement |
|
|
471 | (1) |
|
12.6.2 Back EMF Constant Measurement |
|
|
472 | (1) |
|
12.6.3 Inductance Measurement |
|
|
473 | (2) |
|
12.6.4 Look-up Table for Optimal Current Commands |
|
|
475 | (7) |
|
12.6.5 Torque Control with Voltage Anti-Windup |
|
|
482 | (1) |
|
|
483 | (1) |
|
|
484 | (5) |
13 Vehicle Dynamics |
|
489 | (24) |
|
13.1 Longitudinal Vehicle Dynamics |
|
|
489 | (4) |
|
13.1.1 Aerodynamic Drag Force |
|
|
490 | (1) |
|
13.1.2 Rolling Resistance |
|
|
491 | (1) |
|
13.1.3 Longitudinal Traction Force |
|
|
492 | (1) |
|
|
493 | (1) |
|
13.2 Acceleration Performance and Vehicle Power |
|
|
493 | (7) |
|
|
495 | (1) |
|
13.2.2 Speed Calculation with Torque Profile |
|
|
496 | (4) |
|
|
500 | (8) |
|
13.3.1 Mechanical Power Calculation |
|
|
501 | (3) |
|
13.3.2 Electrical Power Calculation |
|
|
504 | (1) |
|
13.3.3 Motor and Inverter Loss Calculation |
|
|
504 | (1) |
|
13.3.4 Efficiency over Driving Cycle |
|
|
505 | (3) |
|
|
508 | (1) |
|
|
509 | (4) |
14 Hybrid Electric Vehicles |
|
513 | (38) |
|
|
513 | (5) |
|
|
514 | (2) |
|
14.1.2 HEV Power Train Components |
|
|
516 | (2) |
|
14.2 HEV Power Train Configurations |
|
|
518 | (2) |
|
|
520 | (1) |
|
14.3.1 Simulation Results of Series Hybrids |
|
|
521 | (1) |
|
14.4 Parallel Drive Train |
|
|
521 | (12) |
|
14.4.1 Electrical Continuous Variable Transmission |
|
|
525 | (1) |
|
|
526 | (2) |
|
14.4.3 Power Split with Speeder and Torquer |
|
|
528 | (2) |
|
14.4.4 Motor/Generator Operation Principle |
|
|
530 | (3) |
|
14.5 Series/Parallel Drive Train |
|
|
533 | (13) |
|
14.5.1 Prius Driving Cycle Simulation |
|
|
541 | (1) |
|
14.5.2 2017 Prius Plug-in Two-Mode Transmission |
|
|
542 | (1) |
|
14.5.3 Gen 2 Volt Powertrain |
|
|
542 | (4) |
|
|
546 | (2) |
|
|
548 | (3) |
Index |
|
551 | |