|
|
xiii | |
|
|
xv | |
|
|
1 | (18) |
|
|
1 | (1) |
|
1.2 Adaptive Detection of Multichannel Signal |
|
|
1 | (4) |
|
1.3 Persymmetric Structure of Covariance Matrix |
|
|
5 | (3) |
|
1.4 Organization and Outline of the Book |
|
|
8 | (1) |
|
1.A Detector Design Criteria |
|
|
9 | (4) |
|
|
10 | (1) |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
11 | (1) |
|
1.A.2 No Nuisance Parameter |
|
|
11 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
12 | (1) |
|
|
13 | (6) |
|
|
19 | (32) |
|
|
20 | (3) |
|
2.1.1 Unstructured SMI Beamformer |
|
|
21 | (1) |
|
|
21 | (1) |
|
|
22 | (1) |
|
2.1.2 Persymmetric SMI Beamformer |
|
|
22 | (1) |
|
2.2 Average SINR in Matched Case |
|
|
23 | (2) |
|
2.3 Average SINR in Mismatched Cases |
|
|
25 | (3) |
|
|
25 | (2) |
|
2.3.2 Non-Homogeneous Case |
|
|
27 | (1) |
|
|
28 | (3) |
|
|
31 | (4) |
|
2.B Proof of Theorem 2.3.1 |
|
|
35 | (7) |
|
2.C Derivations of (2.B.22) |
|
|
42 | (2) |
|
2.D Derivations of (2.B.28) |
|
|
44 | (1) |
|
2.E Derivations of (2.B.36) |
|
|
44 | (1) |
|
2.F Derivation of E(ww†) in the Mismatched Case |
|
|
45 | (3) |
|
|
48 | (3) |
|
3 Invar iance Issues under Per symmetry |
|
|
51 | (30) |
|
|
51 | (1) |
|
3.2 Homogeneous Environment |
|
|
52 | (10) |
|
3.2.1 Stochastic Representation |
|
|
56 | (2) |
|
3.2.2 Invariant Detectors |
|
|
58 | (2) |
|
3.2.3 Statistical Characterization |
|
|
60 | (1) |
|
3.2.3.1 LRT-Based Decision Schemes |
|
|
61 | (1) |
|
3.3 Partially Homogeneous Environment |
|
|
62 | (3) |
|
3.3.1 Invariant Detectors for Partially Homogeneous Scenarios |
|
|
63 | (2) |
|
3.A Proof of Theorem 3.2.1 |
|
|
65 | (4) |
|
|
69 | (1) |
|
3.C Proof of Theorem 3.2.2 |
|
|
70 | (1) |
|
3.D Proof of Theorem 3.2.3 |
|
|
71 | (5) |
|
3.E Proof of Theorem 3.2.5 |
|
|
76 | (1) |
|
3.F Proof of Theorem 3.3.1 |
|
|
77 | (1) |
|
|
78 | (3) |
|
4 Persymmetric Adaptive Subspace Detector |
|
|
81 | (20) |
|
|
81 | (1) |
|
4.2 Persymmetric One-Step GLRT |
|
|
82 | (3) |
|
|
85 | (5) |
|
4.3.1 Transformation from Complex Domain to Real Domain |
|
|
86 | (1) |
|
4.3.2 Statistical Characterizations |
|
|
87 | (1) |
|
4.3.2.1 Equivalent Form of XTPX |
|
|
87 | (1) |
|
4.3.2.2 Equivalent Form of XTPX |
|
|
88 | (1) |
|
4.3.2.3 Statistical Distribution of A |
|
|
89 | (1) |
|
4.3.3 Probability of False Alarm |
|
|
89 | (1) |
|
|
90 | (1) |
|
4.A Derivations of (4.13) |
|
|
91 | (2) |
|
4.B Derivations of (4.38) |
|
|
93 | (3) |
|
4.C Derivations of (4.62) |
|
|
96 | (2) |
|
|
98 | (3) |
|
5 Persymmetric Detectors with Enhanced Rejection Capabilities |
|
|
101 | (12) |
|
|
101 | (2) |
|
|
103 | (3) |
|
5.2.1 Persymmetric Rao Test |
|
|
103 | (1) |
|
|
104 | (2) |
|
|
106 | (2) |
|
5.A Derivations of (5.32) |
|
|
108 | (3) |
|
|
111 | (2) |
|
6 Distributed Target Detection in Homogeneous Environments |
|
|
113 | (32) |
|
6.1 Persymmetric One-Step GLRT |
|
|
114 | (9) |
|
|
114 | (2) |
|
6.1.2 Analytical Performance |
|
|
116 | (1) |
|
6.1.2.1 Transformation from Complex Domain to Real Domain |
|
|
116 | (1) |
|
6.1.2.2 Statistical Properties |
|
|
117 | (2) |
|
6.1.2.3 Detection Probability |
|
|
119 | (3) |
|
6.1.2.4 Probability of False Alarm |
|
|
122 | (1) |
|
6.2 Persymmetric Two-Step GLRT |
|
|
123 | (7) |
|
|
123 | (1) |
|
6.2.2 Analytical Performance |
|
|
124 | (1) |
|
6.2.2.1 Statistical Properties |
|
|
125 | (1) |
|
6.2.2.2 Probability of False Alarm |
|
|
126 | (1) |
|
6.2.2.3 Detection Probability |
|
|
127 | (3) |
|
|
130 | (6) |
|
6.A Derivations of (6.31) |
|
|
136 | (3) |
|
6.B Derivations of (6.39) |
|
|
139 | (1) |
|
6.C Derivations of (6.69) |
|
|
140 | (2) |
|
6.D Proof of Theorem 6.2.1 |
|
|
142 | (1) |
|
|
142 | (3) |
|
7 Robust Detection in Homogeneous Environments |
|
|
145 | (16) |
|
|
145 | (1) |
|
|
146 | (7) |
|
|
148 | (1) |
|
|
148 | (1) |
|
|
148 | (1) |
|
|
149 | (1) |
|
7.2.2.1 One-Step Wald Test |
|
|
149 | (2) |
|
7.2.2.2 Two-Step Wald Test |
|
|
151 | (1) |
|
|
152 | (1) |
|
|
153 | (4) |
|
7.A Derivations of (7.36) |
|
|
157 | (1) |
|
|
158 | (3) |
|
8 Adaptive Detection with Unknown Steering Vector |
|
|
161 | (22) |
|
|
161 | (1) |
|
|
162 | (5) |
|
|
162 | (2) |
|
8.2.2 Threshold Setting for Per-SNT |
|
|
164 | (2) |
|
8.2.2.1 Transformation from Complex Domain to Real Domain |
|
|
166 | (1) |
|
8.2.2.2 Probability of False Alarm for Per-SNT |
|
|
166 | (1) |
|
|
167 | (3) |
|
|
167 | (2) |
|
8.3.2 Threshold Setting for Per-GLRT |
|
|
169 | (1) |
|
|
170 | (9) |
|
8.4.1 Probability of False Alarm |
|
|
170 | (1) |
|
8.4.2 Detection Performance |
|
|
170 | (7) |
|
|
177 | (2) |
|
8.A Derivations of (8.13) |
|
|
179 | (1) |
|
8.B Proof of Theorem 8.2.1 |
|
|
180 | (1) |
|
8.C Derivations of (8.41) and (8.42) |
|
|
181 | (1) |
|
|
182 | (1) |
|
8 E CFARness of the Per-GLRT |
|
|
183 | (4) |
|
|
184 | (3) |
|
9 Adaptive Detection in Interference |
|
|
187 | (12) |
|
|
187 | (1) |
|
|
188 | (3) |
|
|
188 | (2) |
|
|
190 | (1) |
|
9.3 Probability of False Alarm for 1S-PGLRT-I |
|
|
191 | (7) |
|
|
194 | (1) |
|
|
194 | (1) |
|
|
195 | (1) |
|
|
195 | (1) |
|
|
196 | (1) |
|
|
196 | (1) |
|
|
197 | (1) |
|
|
198 | (1) |
|
9 A Derivations of (9.47) |
|
|
199 | (6) |
|
|
202 | (3) |
|
10 Adaptive Detection in Partially Homogeneous Environments |
|
|
205 | (12) |
|
|
205 | (5) |
|
|
205 | (2) |
|
|
207 | (2) |
|
10.1.3 Rao and Wald Tests |
|
|
209 | (1) |
|
|
210 | (4) |
|
|
214 | (3) |
|
11 Robust Detection in Partially Homogeneous Environments |
|
|
217 | (18) |
|
|
217 | (2) |
|
|
219 | (5) |
|
|
219 | (4) |
|
|
223 | (1) |
|
|
224 | (1) |
|
|
224 | (2) |
|
|
226 | (2) |
|
11.A Derivations of (11.47) |
|
|
228 | (4) |
|
|
232 | (3) |
|
12 Joint Exploitation of Persymmetry and Symmetric Spectrum |
|
|
235 | (18) |
|
|
235 | (3) |
|
|
238 | (2) |
|
12.3 Two-Step GLRT and Wald Test |
|
|
240 | (3) |
|
12.3.1 Homogeneous Environment |
|
|
240 | (2) |
|
12.3.2 Partially Homogeneous Environment |
|
|
242 | (1) |
|
|
243 | (6) |
|
12.4.1 Homogeneous Environment |
|
|
244 | (1) |
|
12.4.2 Partially Homogeneous Environment |
|
|
245 | (4) |
|
|
249 | (4) |
|
13 Adaptive Detection after Covariance Matrix Classification |
|
|
253 | (12) |
|
|
253 | (1) |
|
|
254 | (5) |
|
13.2.1 Classification Stage |
|
|
255 | (1) |
|
|
256 | (1) |
|
13.2.2.1 Detector under B\ |
|
|
256 | (1) |
|
13.2.2.2 Detector under H2 |
|
|
256 | (1) |
|
13.2.2.3 Detector under H3 |
|
|
257 | (1) |
|
13.2.2.4 Detector under H4 |
|
|
257 | (1) |
|
13.2.2.5 Detector under H5 |
|
|
257 | (1) |
|
13.2.2.6 Detector under H6 |
|
|
258 | (1) |
|
|
258 | (1) |
|
|
259 | (4) |
|
|
263 | (2) |
|
14 MIMO Radar Target Detection |
|
|
265 | |
|
14.1 Persymmetric Detection in Colocated MIMO Radar |
|
|
266 | (14) |
|
14.1.1 Problem Formulation |
|
|
266 | (2) |
|
|
268 | (3) |
|
14.1.3 Analytical Performance |
|
|
271 | (1) |
|
14.1.3.1 Transformation from Complex Domain to Real Domain |
|
|
271 | (1) |
|
14.1.3.2 Statistical Properties |
|
|
272 | (1) |
|
14.1.3.3 Detection Probability |
|
|
272 | (3) |
|
14.1.3.4 Probability of False Alarm |
|
|
275 | (1) |
|
14.1.4 Numerical Examples |
|
|
275 | (5) |
|
14.2 Persymmetric Detection in Distributed MIMO Radar |
|
|
280 | (9) |
|
|
280 | (2) |
|
14.2.2 Persymmetric GLRT Detector |
|
|
282 | (1) |
|
|
282 | (2) |
|
14.2.2.2 Performance Analysis |
|
|
284 | (2) |
|
14.2.3 Persymmetric SMI Detector |
|
|
286 | (1) |
|
14.2.4 Simulations Results |
|
|
287 | (2) |
|
14.A Derivation of (14.94) |
|
|
289 | (2) |
|
14.B Equivalent Transformation of A |
|
|
291 | (1) |
|
|
292 | |