Muutke küpsiste eelistusi

Adaptive RF Front-Ends for Hand-held Applications [Kõva köide]

  • Formaat: Hardback, 153 pages, kõrgus x laius: 235x155 mm, kaal: 930 g, XV, 153 p., 1 Hardback
  • Sari: Analog Circuits and Signal Processing
  • Ilmumisaeg: 05-Nov-2010
  • Kirjastus: Springer
  • ISBN-10: 9048199344
  • ISBN-13: 9789048199341
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 153 pages, kõrgus x laius: 235x155 mm, kaal: 930 g, XV, 153 p., 1 Hardback
  • Sari: Analog Circuits and Signal Processing
  • Ilmumisaeg: 05-Nov-2010
  • Kirjastus: Springer
  • ISBN-10: 9048199344
  • ISBN-13: 9789048199341
The RF front-end - antenna combination is a vital part of a mobile phone because its performance is very relevant to the link quality between hand-set and cellular network base-stations. The RF front-end performance suffers from changes in operating environment, like hand-effects, that are often unpredictable.Adaptive RF Front-Ends for Hand-Held Applications presents an analysis on the impact of fluctuating environmental parameters. In order to overcome undesired behavior two different adaptive control methods are treated that make RF frond-ends more resilient: adaptive impedance control, and adaptive power control.Several adaptive impedance control techniques are discussed, using a priori knowledge on matching network properties, in order to simplify robust 2-dimensional control.A generic protection concept is presented, based on adaptive power control, which improves the ruggedness of a power amplifier or preserves its linearity under extremes. It comprises over-voltage, over-temperature, and under-voltage protection.

The RF front-end - antenna combination is a vital part of a mobile phone. This book offers a unique account of adaptive RF front-ends. It includes an analysis on the impact of fluctuating environmental parameters, and a generic protection concept is presented.
1 Introduction
1(8)
1.1 Context and Trends in Wireless Communication
1(1)
1.2 Resilience to Unpredictably Changing Environments
2(2)
1.3 Improvements by Adaptively Controlled RF Front-Ends
4(1)
1.4 Aim and Scope of This Book
5(2)
1.5 Book Outline
7(2)
2 Adaptive RF Front-Ends
9(26)
2.1 Introduction
9(1)
2.2 RF Front-End Functionality
10(4)
2.2.1 Antenna Switch
10(1)
2.2.2 Power Amplifier
11(2)
2.2.3 Duplexer
13(1)
2.2.4 Blocking Filter
14(1)
2.3 Fluctuations in Operating Conditions
14(2)
2.4 Impact of Variables
16(9)
2.4.1 Current Fluctuation
16(2)
2.4.2 Voltage Fluctuation
18(3)
2.4.3 Die Temperature Fluctuation
21(1)
2.4.4 Efficiency Fluctuation
22(2)
2.4.5 Discussion on the Impact of Variables
24(1)
2.5 Adaptive Control Theory
25(2)
2.6 Identification of Variables for Detection and Correction
27(5)
2.6.1 Independent Variables
28(1)
2.6.2 Dependent Variables
29(3)
2.7 Conclusions on Adaptive RF Front-Ends
32(3)
3 Adaptive Impedance Control
35(72)
3.1 Introduction
35(14)
3.1.1 Dimensionality
37(2)
3.1.2 Non-linearity
39(2)
3.1.3 Robust Control
41(4)
3.1.4 Impedance Tuning Region
45(2)
3.1.5 Insertion Loss
47(1)
3.1.6 System Gain
48(1)
3.2 Mismatch Detection Method
49(3)
3.2.1 Sensing
49(1)
3.2.2 Detector Concept
50(1)
3.2.3 Simulation Results
51(1)
3.2.4 Conclusions on Mismatch Detection
52(1)
3.3 Adaptively Controlled PI-Networks Using Differentially Controlled Capacitors
52(13)
3.3.1 Concept
53(2)
3.3.2 Differentially Controlled Single-Section PI-Network
55(3)
3.3.3 Differentially Controlled Dual-Section PI-Network
58(1)
3.3.4 Simulations
59(5)
3.3.5 Conclusions on Adaptively Controlled PI-Networks
64(1)
3.4 Adaptively Controlled L-Network Using Cascaded Loops
65(17)
3.4.1 Concept
65(1)
3.4.2 Actuation
66(4)
3.4.3 Convergence
70(2)
3.4.4 Simulations
72(3)
3.4.5 Capacitance Tuning Range Requirement
75(3)
3.4.6 Insertion Loss
78(1)
3.4.7 Tuning Range Requirement
79(2)
3.4.8 Conclusions on Adaptively Controlled L-Network
81(1)
3.5 Adaptive Series-LC Matching Network Using RF-MEMS
82(17)
3.5.1 Adaptive Tuning System
83(4)
3.5.2 Adaptive RF-MEMS System Design
87(8)
3.5.3 Experimental Verification
95(4)
3.5.4 Conclusions on Adaptive Series-LC Matching Module
99(1)
3.6 Load Line Adaptation
99(7)
3.6.1 Introduction
99(1)
3.6.2 Concept
100(2)
3.6.3 Implementation of Load Line Adaptation
102(1)
3.6.4 Simulation Results
103(2)
3.6.5 Conclusions on Load Line Adaptation
105(1)
3.7 Conclusions on Adaptive Impedance Control
106(1)
4 Adaptive Power Control
107(22)
4.1 Introduction
107(2)
4.1.1 Over-Voltage Protection for Improved Ruggedness
108(1)
4.1.2 Over-Temperature Protection for Improved Ruggedness
108(1)
4.1.3 Under-Voltage Protection for Improved Linearity
109(1)
4.2 Safe Operating Conditions
109(3)
4.3 Power Adaptation for Ruggedness
112(9)
4.3.1 Concept
112(2)
4.3.2 Simulations
114(1)
4.3.3 Over-Voltage Protection Circuit
115(1)
4.3.4 Over-Temperature Protection Circuit
116(1)
4.3.5 Technology
117(1)
4.3.6 Experimental Verification
117(4)
4.4 Power Adaptation for Linearity
121(6)
4.4.1 Concept
121(1)
4.4.2 Simulations
122(1)
4.4.3 Circuit Design
123(2)
4.4.4 Experimental Verification
125(2)
4.5 Conclusions on Adaptive Power Control
127(2)
5 Conclusions
129(2)
Appendix A Overview of Adaptively Controlled Matching Networks 131(6)
Appendix B A Dual-Banding Technique 137(2)
Appendix C Transistor Breakdown Voltages 139(8)
Summary 147(1)
References 148