Series Preface |
|
xiii | |
Preface |
|
xv | |
|
|
xix | |
|
|
1 | (110) |
|
Phased Arrays and What They Offer |
|
|
2 | (7) |
|
|
3 | (1) |
|
|
4 | (2) |
|
Graceful degradation of performance |
|
|
6 | (1) |
|
Radiation patterns on demand |
|
|
7 | (1) |
|
The unattractive characteristics |
|
|
8 | (1) |
|
Radar Fundamentals and Applications |
|
|
9 | (13) |
|
|
10 | (3) |
|
|
13 | (1) |
|
Fire control/mid-course guidance |
|
|
14 | (1) |
|
|
15 | (1) |
|
Navigation and space flight |
|
|
15 | (1) |
|
High-resolution systems: SARs and ISARs |
|
|
15 | (4) |
|
|
19 | (3) |
|
Radioastronomy Aims and Applications |
|
|
22 | (5) |
|
|
23 | (1) |
|
The quest for high spatial resolution |
|
|
23 | (1) |
|
Compact arrays, VLBI and OVLBI networks |
|
|
24 | (2) |
|
Applied science radiometric systems |
|
|
26 | (1) |
|
Searches for extraterrestrial intelligence |
|
|
27 | (1) |
|
Planetary Radar Astronomy |
|
|
27 | (2) |
|
Recent developments and discoveries |
|
|
28 | (1) |
|
The Clementine experiment |
|
|
28 | (1) |
|
The Subtle Phased Array Attractors |
|
|
29 | (2) |
|
The nexus between surveillance and tracking |
|
|
29 | (1) |
|
|
30 | (1) |
|
The nexus between spatial resolution and costs |
|
|
30 | (1) |
|
|
31 | (37) |
|
|
31 | (1) |
|
|
32 | (1) |
|
|
33 | (1) |
|
|
34 | (1) |
|
|
35 | (1) |
|
Overview of the radar equation |
|
|
36 | (1) |
|
Other radar characterizations |
|
|
36 | (2) |
|
Large time--bandwidth product radars |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
40 | (1) |
|
|
40 | (1) |
|
Bistatic/multistatic radars |
|
|
41 | (1) |
|
|
42 | (1) |
|
Receive station scanning rate |
|
|
42 | (1) |
|
|
42 | (1) |
|
Limitations of ground-based radars |
|
|
43 | (1) |
|
Meeting the challenges of low-flying threats |
|
|
44 | (1) |
|
|
45 | (1) |
|
Airborne early warning radars |
|
|
45 | (1) |
|
Eternal airplanes/pseudo-satellites |
|
|
46 | (1) |
|
|
47 | (1) |
|
Optimal frequency bands for radar functions |
|
|
47 | (1) |
|
The surveillance function |
|
|
47 | (1) |
|
|
48 | (1) |
|
A golden mean band for multifunction radars? |
|
|
48 | (1) |
|
The identification function |
|
|
49 | (2) |
|
VHF multifrequency/multipolarization radar |
|
|
51 | (1) |
|
|
52 | (2) |
|
|
54 | (1) |
|
Depolarization of EM waves |
|
|
54 | (1) |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
55 | (1) |
|
|
56 | (1) |
|
|
57 | (1) |
|
|
58 | (1) |
|
RCS minimization approaches |
|
|
58 | (1) |
|
|
59 | (1) |
|
Broadband arrays: definitions and applications |
|
|
59 | (1) |
|
Radar arrays: a record of progress |
|
|
60 | (8) |
|
|
68 | (20) |
|
Discoveries and more discoveries |
|
|
68 | (4) |
|
Measurements and fundamental quantities |
|
|
72 | (1) |
|
|
73 | (1) |
|
Flux density and antenna temperature |
|
|
74 | (1) |
|
|
75 | (1) |
|
The complementarity of radiotelescopes |
|
|
76 | (1) |
|
|
76 | (3) |
|
Image synthesis applications |
|
|
79 | (1) |
|
Radioastronomy applications |
|
|
79 | (1) |
|
Applied science applications |
|
|
80 | (1) |
|
Minimum-redundancy arrays and applications |
|
|
81 | (1) |
|
Radioastronomy polarimetric systems |
|
|
81 | (1) |
|
Image formation by self-calibration |
|
|
82 | (1) |
|
Radioastronomy arrays: a record of progress |
|
|
82 | (6) |
|
Variants of Phased Arrays |
|
|
88 | (2) |
|
Many T/R modules and one aperture |
|
|
88 | (1) |
|
Some wireless power transmission applications |
|
|
89 | (1) |
|
|
90 | (2) |
|
Geostationary Earth orbit (GEO) satellite systems |
|
|
90 | (1) |
|
LEO/MEO satellite systems |
|
|
91 | (1) |
|
The Importance of Radiofrequency (RF) Subsystems |
|
|
92 | (2) |
|
|
94 | (6) |
|
Microelectromechanical systems |
|
|
94 | (1) |
|
|
95 | (1) |
|
|
96 | (1) |
|
|
97 | (1) |
|
|
97 | (1) |
|
Post-cold-war environment and technology |
|
|
97 | (1) |
|
Cost minimization/sharing approaches |
|
|
98 | (2) |
|
|
100 | (11) |
|
|
102 | (9) |
|
From Array Theory to Shared Aperture Arrays |
|
|
111 | (108) |
|
|
112 | (1) |
|
|
112 | (31) |
|
Uniformly spaced line sources of equal amplitude |
|
|
113 | (3) |
|
|
116 | (1) |
|
The beamwidth and bandwidth of phased arrays |
|
|
117 | (2) |
|
|
119 | (1) |
|
|
119 | (1) |
|
Mutual coupling between antenna elements |
|
|
120 | (2) |
|
Aperiodic and random arrays |
|
|
122 | (3) |
|
Random distribution arrays |
|
|
125 | (1) |
|
Minimum redundancy arrays |
|
|
126 | (2) |
|
Uniformly spaced line sources of unequal amplitude |
|
|
128 | (1) |
|
|
129 | (1) |
|
Dolph--Chebyshev synthesis |
|
|
130 | (1) |
|
|
131 | (4) |
|
|
135 | (1) |
|
|
136 | (1) |
|
|
136 | (1) |
|
|
137 | (3) |
|
|
140 | (3) |
|
|
143 | (1) |
|
|
143 | (7) |
|
A systems view of grating and sidelobes |
|
|
146 | (2) |
|
Hansen synthesis---circular distribution |
|
|
148 | (1) |
|
Taylor n synthesis---circular distribution |
|
|
149 | (1) |
|
Circular/Cylindrical Arrays |
|
|
150 | (7) |
|
2--18 GHz circular arrays |
|
|
151 | (1) |
|
Radioastronomy circular arrays |
|
|
152 | (4) |
|
A one-octave cylindrical array |
|
|
156 | (1) |
|
|
156 | (1) |
|
Characterization and Realization of Arrays |
|
|
157 | (29) |
|
Active, passive, and hybrid arrays |
|
|
157 | (3) |
|
|
160 | (1) |
|
|
161 | (2) |
|
|
163 | (1) |
|
Single-beam beamforming architectures |
|
|
163 | (2) |
|
Array G/T ratio and noise figure |
|
|
165 | (3) |
|
|
168 | (1) |
|
Modern array synthesis procedures |
|
|
169 | (1) |
|
|
170 | (1) |
|
|
171 | (3) |
|
The Frank--Coffman approach |
|
|
174 | (1) |
|
|
175 | (1) |
|
Random and quantization errors |
|
|
175 | (1) |
|
|
176 | (2) |
|
Amplitude, phase, and delay quantization errors |
|
|
178 | (2) |
|
Realization aspects of important proposals |
|
|
180 | (3) |
|
Heat management and power supplies |
|
|
183 | (1) |
|
|
183 | (1) |
|
|
184 | (2) |
|
Affordable and Low-Cost Arrays |
|
|
186 | (3) |
|
Approaches to affordable radars |
|
|
186 | (3) |
|
|
189 | (19) |
|
Over-the-horizon radar systems |
|
|
189 | (2) |
|
Phenomenological/technological issues |
|
|
191 | (2) |
|
Futuristic approaches to wide area surveillance |
|
|
193 | (1) |
|
|
193 | (1) |
|
Electronic warfare arrays |
|
|
194 | (1) |
|
|
195 | (1) |
|
The role of FPA non-linearities in wideband arrays |
|
|
196 | (1) |
|
Proposals for second-generation radiotelescopes |
|
|
197 | (1) |
|
|
198 | (1) |
|
The arguments for systems integration |
|
|
198 | (1) |
|
The case for shared aperture systems |
|
|
199 | (1) |
|
The case for independent systems |
|
|
200 | (1) |
|
The ideal shared aperture array |
|
|
200 | (1) |
|
US proposals and prototypes |
|
|
201 | (4) |
|
|
205 | (1) |
|
|
206 | (2) |
|
|
208 | (11) |
|
|
210 | (9) |
|
|
219 | (64) |
|
A Review of Trends and Requirements |
|
|
220 | (2) |
|
|
222 | (1) |
|
|
222 | (1) |
|
|
223 | (17) |
|
|
226 | (1) |
|
|
227 | (2) |
|
Proposals for Schmidt radiotelescopes |
|
|
229 | (2) |
|
|
231 | (2) |
|
|
233 | (1) |
|
Reflectors utilizing frequency-selective surfaces |
|
|
234 | (1) |
|
|
235 | (1) |
|
Polarization: splitters and processing |
|
|
236 | (1) |
|
|
237 | (2) |
|
|
239 | (1) |
|
|
240 | (3) |
|
|
241 | (1) |
|
|
242 | (1) |
|
Phased Arrays on Steerable Mounts |
|
|
243 | (3) |
|
Microstrip/Printed Board Antennas |
|
|
246 | (21) |
|
Simple patch/dipole antennas |
|
|
247 | (3) |
|
|
250 | (3) |
|
Performance of simple patch antennas |
|
|
253 | (2) |
|
The evolution of high-quality antennas |
|
|
255 | (1) |
|
|
256 | (1) |
|
Moderate-bandwidth antennas |
|
|
257 | (1) |
|
The electromagnetically coupled (EMC) patch |
|
|
257 | (1) |
|
|
258 | (1) |
|
|
259 | (1) |
|
|
259 | (1) |
|
Dual-band/Multiband antennas |
|
|
260 | (1) |
|
|
260 | (2) |
|
|
262 | (1) |
|
|
262 | (1) |
|
Log-periodic/spiral-mode antennas |
|
|
262 | (1) |
|
Tapered slotline antennas |
|
|
263 | (3) |
|
|
266 | (1) |
|
|
267 | (1) |
|
Superconducting Antennas/Arrays |
|
|
267 | (1) |
|
|
268 | (2) |
|
The marginalization of the AQ grating lobes |
|
|
269 | (1) |
|
|
270 | (1) |
|
Polarization Agility and Work in Progress |
|
|
270 | (1) |
|
Concluding Remarks and a Postscript |
|
|
271 | (12) |
|
|
274 | (9) |
|
|
283 | (42) |
|
|
283 | (3) |
|
|
286 | (4) |
|
|
287 | (1) |
|
|
288 | (1) |
|
The implementation of amplitude tapers |
|
|
289 | (1) |
|
|
290 | (1) |
|
|
290 | (18) |
|
Cost minimization approaches |
|
|
293 | (1) |
|
|
293 | (1) |
|
End-to-end chip and assembly yields |
|
|
294 | (1) |
|
|
295 | (1) |
|
|
296 | (1) |
|
Other important approaches, initiatives and trends |
|
|
297 | |
|
High-stability and high-purity oscillators |
|
|
250 | (49) |
|
Typical low-noise front-ends and power amplifiers |
|
|
299 | (5) |
|
Programmable phase-shifters/vector modulators |
|
|
304 | (1) |
|
|
305 | (2) |
|
|
307 | (1) |
|
Other T/R module components |
|
|
307 | (1) |
|
|
308 | (7) |
|
Klystrons and traveling-wave tubes |
|
|
309 | (2) |
|
Miniaturization of vacuum microwave devices |
|
|
311 | (1) |
|
|
311 | (2) |
|
Multiple-beam tubes and gyro-klystrons |
|
|
313 | (2) |
|
The Marriage of Vacuum and Solid-State Technologies |
|
|
315 | (1) |
|
Vacuum Microelectronic Devices |
|
|
316 | (1) |
|
|
317 | (2) |
|
|
319 | (6) |
|
|
320 | (5) |
|
|
325 | (30) |
|
The Basic Issues and Some Elaborations |
|
|
326 | (1) |
|
The Formation of Staring Beams |
|
|
327 | (5) |
|
Resistive network realizations |
|
|
327 | (2) |
|
Transmission line realizations |
|
|
329 | (1) |
|
Blass and Butler matrices |
|
|
330 | (2) |
|
The Formation of Several Agile/Staring Beams |
|
|
332 | (3) |
|
|
335 | (4) |
|
Important system parameters |
|
|
336 | (2) |
|
|
338 | (1) |
|
Photonics and Phased Arrays |
|
|
339 | (2) |
|
|
339 | (1) |
|
The generation of staring beams |
|
|
340 | (1) |
|
|
341 | (1) |
|
|
341 | (6) |
|
|
342 | (1) |
|
|
343 | (1) |
|
RADANT-type beam scanners |
|
|
344 | (1) |
|
The beam tagging technique |
|
|
345 | (2) |
|
|
347 | (8) |
|
|
350 | (5) |
Index |
|
355 | |