Muutke küpsiste eelistusi

Advanced Electrical and Electronics Materials: Processes and Applications [Kõva köide]

(Motilal Nehru National Institute of Technology, Allahabad, India), Series edited by , (Motilal Nehru National Institute of Technology, Allahabad, India)
  • Formaat: Hardback, 760 pages, kõrgus x laius x paksus: 239x158x46 mm, kaal: 1202 g
  • Sari: Advanced Material Series
  • Ilmumisaeg: 19-May-2015
  • Kirjastus: Wiley-Scrivener
  • ISBN-10: 1118998359
  • ISBN-13: 9781118998359
Teised raamatud teemal:
  • Formaat: Hardback, 760 pages, kõrgus x laius x paksus: 239x158x46 mm, kaal: 1202 g
  • Sari: Advanced Material Series
  • Ilmumisaeg: 19-May-2015
  • Kirjastus: Wiley-Scrivener
  • ISBN-10: 1118998359
  • ISBN-13: 9781118998359
Teised raamatud teemal:

This comprehensive and unique book is intended to cover the vast and fast-growing field of electrical and electronic materials and their engineering in accordance with modern developments. Basic and pre-requisite information has been included for easy transition to more complex topics. Latest developments in various fields of materials and their sciences/engineering, processing and applications have been included. Latest topics like PLZT, vacuum as insulator, fiber-optics, high temperature superconductors, smart materials, ferromagnetic semiconductors etc. are covered. Illustrations and examples encompass different engineering disciplines such as robotics, electrical, mechanical, electronics, instrumentation and control, computer, and their inter-disciplinary branches. A variety of materials ranging from iridium to garnets, microelectronics, micro alloys to memory devices, left-handed materials, advanced and futuristic materials are described in detail.

Preface xxxv
Acknowledgement xxxvii
About the Authors xxxix
Abbreviations xli
1 General Introduction to Electrical and Electronic Materials 1(32)
1.1 Importance of Materials
1(1)
1.2 Importance of Electrical and Electronic Materials
2(1)
1.3 Classification of Electrical and Electronic Materials
3(6)
1.3.1 Conductors
4(1)
1.3.2 Semiconductors
4(1)
1.3.3 Dielectrics
5(1)
1.3.4 Superconductors
6(1)
1.3.5 Magnetic Materials
7(1)
1.3.6 Ferrites
7(1)
1.3.7 Ferroelectrics
8(1)
1.3.8 Piezoelectrics
8(1)
1.3.9 Perovskites (Titanates, Zirconates, Hafnates)
8(1)
1.3.10 Spinels, Garnets, and Magnetoplumbite
9(1)
1.4 Scope of Electrical and Electronic Materials
9(2)
1.5 Requirements of Engineering Materials
11(2)
1.6 Operational Requirements of Electrical and Electronic Materials
13(2)
1.6.1 High and Low Temperature (Service) Materials
14(1)
1.6.2 High Voltage (Service) Materials
14(1)
1.7 Classification of Solids on the Basis of Energy Gap
15(3)
1.7.1 Energy Gap for Different Solids
16(1)
1.7.2 Comparison among Conductors, Semiconductors and Insulators
17(1)
1.8 Glimpse of Some Electronic Products, Their Working Principles and Choicest Materials
18(1)
1.9 Different Types of Engineering Materials
19(2)
1.9.1 Metals
19(1)
1.9.2 Non-Ferrous Metals
19(1)
1.9.3 Ceramics
19(1)
1.9.4 Organic Polymers
20(1)
1.9.5 Alloys
20(1)
1.9.6 Composites
21(1)
1.10 Different Levels of Materials Structure
21(1)
1.10.1 Micro-Structure Levels
21(1)
1.10.2 Dimensional Range and Examples
22(1)
1.11 Spintronics (The Electronics of Tomorrow) and Spintronic Materials
22(2)
1.11.1 Major Fields of Spintronic Research
23(1)
1.11.2 Operational Mechanisms of Spintronic Devices
23(1)
1.11.3 Working Principle of Spintronic Devices
24(1)
1.11.4 Emerging and Futuristic Spintronic Materials
24(1)
1.12 Ferromagnetic Semiconductor
24(2)
1.12.1 Emerging Wide Bandgap Semiconductors
25(1)
1.13 Left-Handed (LH) Materials
26(1)
1.14 Solved Examples
27(2)
Review Questions
29(1)
Objective Questions
30(3)
2 Atomic Models, Bonding in Solids, Crystal Geometry, and Miller Indices 33(38)
2.1 Atomic Models
33(1)
2.2 Bohr's Quantum Atomic Model
33(4)
2.2.1 Radii of Orbits, Velocity and Frequency of Electrons
35(1)
2.2.2 Normal, Excited and Ionized Atoms
36(1)
2.2.3 Kinetic and Potential Energy of Electron
36(1)
2.3 Modern Concept of Atomic Model
37(2)
2.3.1 De Broglie Wave
37(1)
2.3.2 Wavelength of Electron Wave
37(1)
2.3.3 Concept of Standing Wave
38(1)
2.4 Electron Configuration
39(1)
2.5 Meaning of Chemical (or Atomic) Bonding
40(1)
2.6 Classification of Chemical Bonds
40(1)
2.7 Ionic Bond
41(1)
2.8 Covalent Bonds
42(3)
2.8.1 Types of Covalent Bonds
42(1)
2.8.2 Bond Angle
43(1)
2.8.3 Directional and Non-Directional Bonds
44(1)
2.8.4 Mixed bonds
44(1)
2.9 Monocrystalline and Polycrystalline Crystal Structures
45(1)
2.9.1 Construction of a solid
45(1)
2.10 Space Lattice
46(1)
2.11 Basis
46(1)
2.12 Unit Cell and Crystal
47(1)
2.13 Bravais Crystal System
48(3)
2.14 Primitive and Non-Primitive Unit Cells
51(1)
2.15 Coordination Number
52(1)
2.16 Atomic Packing Fraction
52(3)
2.17 Calculation of Density (or Bulk Density)
55(1)
2.18 Miller Indices
55(6)
2.18.1 Determining the Miller Indices of a Given Plane
56(2)
2.18.2 Drawing a Plane Whose Miller Indices are Given
58(1)
2.18.3 Drawing a Plane which is Parallel to an Axis
58(1)
2.18.4 Planes with Negative Indices
59(1)
2.18.5 Family of Planes
59(1)
2.18.6 Miller Indices: Crystallographic Notation of Atomic Crystal Directions
60(1)
2.19 Interplaner Spacing
61(1)
2.20 Linear Density
62(1)
2.21 Planer Density
63(1)
2.21.1 Planer Density in Face Centred Cube (FCC) on (100) Plane
63(1)
2.21.2 Planer Density in FCC on (110) Plane
63(1)
2.21.3 Planer Density in FCC on (111) Plane
64(1)
Quick Revision Summary
64(1)
Review Questions
64(2)
Numerical Questions
66(3)
Objective Questions
69(2)
3 Solid Structures, Characterization of Materials, Crystal Imperfections, and Mechanical Properties of Materials 71(38)
3.1 Crystallography
71(1)
3.2 Crystalline and Non-Crystalline Structures
72(1)
3.3 Hexagonally Closed Packed Structure (HCP)
73(1)
3.4 VOIDS
74(1)
3.4.1 Tetrahedral Voids
74(1)
3.4.2 Octahedral Void
74(1)
3.5 Covalent Solids
75(1)
3.5.1 Diamond Cubic (DC) Structure
75(1)
3.6 Bragg's Law of X-Rays Diffraction
76(2)
3.6.1 Bragg's Equation
77(1)
3.6.2 Reflections from Various Sets
78(1)
3.7 Structure Determination
78(1)
3.8 Microscopy
79(3)
3.8.1 Microscopic Principle
80(1)
3.8.2 Ray Diagram and Principle of Magnification
81(1)
3.8.3 Magnifying Power of Microscope
82(1)
3.9 Different Types of Metallurgical Microscopes and Their Features
82(2)
3.10 Working Principle of Electron Microscope
84(1)
3.10.1 Formation of Magnified Image
84(1)
Crystal Imperfections
85(1)
3.11 Ideal and Real Crystals, and Imperfections
85(1)
3.11.1 Disadvantageous Effects of Imperfections
85(1)
3.11.2 Advantageous Effect of Imperfection
86(1)
3.12 Classification of Imperfections
86(1)
3.13 Point Imperfections
87(2)
3.13.1 Vacancy
87(1)
3.13.2 Substitutional Impurity
87(1)
3.13.3 Interstitial Impurity
88(1)
3.13.4 Frenkel's Defect
88(1)
3.13.5 Schottky's Defect
89(1)
3.14 Effects of Point Imperfections
89(1)
3.15 Line Imperfections
90(1)
3.16 Features of Edge Dislocation
90(1)
3.17 Screw Dislocation
90(2)
3.17.1 Stress-Strain Field in Screw Dislocation
90(2)
3.18 Characteristics of Dislocations
92(1)
3.18.1 Burgers Vectors of Dislocations in Cubic Crystals
93(1)
3.19 Sources of Dislocations, Their Effects and Remedies
93(2)
3.19.1 Effects of Dislocations
94(1)
3.19.2 Remedies to Minimize the Dislocations
94(1)
3.20 Grain Boundary
95(1)
3.20.1 Mechanism of grain boundary formation
95(1)
3.21 Twin or Twinning
96(1)
3.21.1 Annealing Twin and Deformation Twin
96(1)
3.22 Mechanical Properties of Metals
97(8)
3.22.1 Isotropic Anisotropic and Orthotropic Materials
97(1)
3.22.2 Homogeneity and Heterogeneity
97(1)
3.22.3 Strain Energy Absorbed by the Materials
98(1)
3.22.4 Strength
99(1)
3.22.5 Stiffness
100(1)
3.22.6 Resilience, Proof Resilience and Toughness
100(1)
3.22.7 Elasticity and Plasticity
101(1)
3.22.8 Ductility and Brittleness
101(2)
3.22.9 Malleability
103(1)
3.22.10 Fatigue
103(1)
3.22.11 Creep
103(1)
3.22.12 Need of Different Properties for Different Applications
104(1)
3.22.13 Hardness
104(1)
3.22.14 Impact
104(1)
3.22.15 Factors Affecting Mechanical Properties
104(1)
Review Questions
105(3)
Numerical Problems
108(1)
4 Conductive Materials: Electron Theories, Properties and Behaviour 109(44)
4.1 Electrons and Their Role in Conductivity
109(1)
4.1.1 Valence and Free Electrons
109(1)
4.2 Electron Theories of Solids
110(1)
4.3 Free Electron Theory
110(8)
4.3.1 Kinetic Energy in Terms of Wave Number
111(1)
4.3.2 Kinetic Energy in Terms of Length of the Solid
112(1)
4.3.3 Energy Equation for 3-Dimensional Solid
113(1)
4.3.4 Mechanism of Conduction by Free Electrons
114(1)
4.3.5 Drift Velocity and Collision Time
115(2)
4.3.6 Mean Free Path (or Mean Free Length)
117(1)
4.3.7 Effect of Temperature on Mean Free Path
117(1)
4.4 Energy Band Theory
118(2)
4.4.1 Critical Conditions
119(1)
4.4.2 Magnitude of Energy Gap
120(1)
4.5 Brillouin Zone Theory
120(5)
4.5.1 Meaning of Different Brillouin Zones
121(1)
4.5.2 First and Second Brillouin Zones
122(1)
4.5.3 Brillouin Zones for Simple Cubic Lattice
123(1)
4.5.4 Brillouin Zones for BCC, FCC and HCP Lattices
124(1)
4.6 Conductors
125(1)
4.6.1 Characteristics of a Good Conductor
126(1)
4.7 Factors Affecting Conductivity (and Resistivity) of Metals
126(4)
4.7.1 Temperature Effect on Conductivity
127(2)
4.7.2 Nordheim Equation for Impurity and Alloying Effects on Resistivity
129(1)
4.7.3 Effect of Plastic Deformation and Cold Working
129(1)
4.7.4 Matthilseen Rule of Total Resistivity
129(1)
4.8 Thermal Conductivity
130(2)
4.8.1 Salient Features of Different Materials Regarding Thermal Conductivity
131(1)
4.9 Heating Effect of Current
132(1)
4.9.1 Joule's Law of Electrical Heating
132(1)
4.9.2 Applications of Heating Effect
133(1)
4.10 Thermoelectric Effect (or Thermoelectricity)
133(1)
4.11 Seebeck Effect
134(2)
4.11.1 Seebeck Series
134(1)
4.11.2 Seebeck e.m.f.
135(1)
4.11.3 Applications of Thermoelectric Effect
136(1)
4.12 Peltier Effect
136(1)
4.12.1 Peltier Coefficient
136(1)
4.13 Thomson Effect
137(1)
4.13.1 Types of Materials on the Basis of Thomson Effect
138(1)
4.13.2 Materials for Thermocouples and Thermopiles
138(1)
4.14 Wiedemann-Franz Law and Lorentz Relation
138(5)
4.14.1 Determining the Thermal Conductivity
139(1)
4.14.2 Consideration of Electron Collision
140(1)
4.14.3 Consideration of Fermi Energy
141(1)
4.14.4 Lorentz Number
142(1)
4.15 Solved Examples
143(3)
Quick Revision Summary
146(1)
Review Questions
147(2)
Numerical Problems
149(2)
Objective Questions
151(2)
True and False Type Questions
151(1)
Fill in the Blank Type Questions
152(1)
Multiple Choice Type Questions
152(1)
5 Conductive Materials: Types and Applications 153(32)
5.1 Mechanically Processed Forms of Electrical Materials
153(2)
5.1.1 Cladded Metals
153(1)
5.1.2 Bimetals
153(1)
5.1.3 Sintered Materials
154(1)
5.1.4 Hot Rolled and Cold Rolled Metals
154(1)
5.1.5 Hard Drawn and Soft Drawn Metals
154(1)
5.1.6 Annealed Metals
155(1)
5.2 Types of Conducting Materials
155(1)
5.3 Low Resistivity Materials
156(5)
5.3.1 Characteristics of Low Resistivity Materials
156(1)
5.3.2 Copper and its Types
157(1)
5.3.3 Types of Aluminium and their Applications
158(2)
5.3.4 Comparison among Different Low Resistivity Conducting Materials
160(1)
5.3.5 Copper Alloys (Brass and Bronze)
160(1)
5.4 High Resistivity Materials
161(4)
5.4.1 Characteristics of High Resistivity Materials
163(1)
5.4.2 Nickel
163(1)
5.4.3 Tantalum
164(1)
5.4.4 High Resistivity Alloys
164(1)
5.4.5 Salient Applications of High Resistivity Materials
164(1)
5.5 Contact Materials
165(5)
5.5.1 Requirements of a Good Contact Material
166(1)
5.5.2 Types of Contact Materials
166(2)
5.5.3 Common Contact Metals
168(1)
5.5.4 Salient Applications of Contact Materials
169(1)
5.6 Fusible (or Fuse) Materials
170(2)
5.6.1 Requirements of Fuse Materials
170(1)
5.6.2 Fusible Metals and Alloys
171(1)
5.7 Filament Materials
172(1)
5.7.1 Requirements of a Good Filament Material
172(1)
5.7.2 Tungsten Filament
172(1)
5.8 Carbon As Filamentary and Brush Material
173(2)
5.8.1 Carbon Graphite
174(1)
5.8.2 Main Applications of Carbon Materials
174(1)
5.9 Conductors, Cables, and Wires: Types and Materials
175(3)
5.9.1 Stranded Conductors
176(1)
5.9.2 Types of Stranded Conductors
176(1)
5.9.3 Specifications of Stranded Conductors
177(1)
5.9.4 Core Cable
177(1)
5.9.5 Reinforced Conductor
178(1)
5.10 Solder Materials for Joining Wires and Joints in Power Apparatuses
178(1)
5.10.1 Soft Solder
178(1)
5.10.2 Hard Solder
178(1)
5.11 Sheathing Materials
179(1)
5.12 Sealing Materials
180(1)
5.13 Solved Examples
180(1)
Review Questions
181(2)
Objective Questions
183(2)
6 Semiconducting Materials: Properties and Behaviour 185(44)
6.1 Introduction to Semiconductors
185(1)
6.1.1 Properties of Semiconductors
186(1)
6.2 Different Types of Semiconducting Materials
186(2)
6.2.1 Merits of Semiconducting Materials
186(1)
6.2.2 Characteristics of Semiconducting Materials
187(1)
6.3 Determining the Percentage Ionic Character of Compound Semiconductor
188(1)
6.4 Fermi Energy Level
189(2)
6.4.1 Fermi-Dirac Probability Function and Temperature Effect
189(2)
6.5 Intrinsic Semiconductors
191(3)
6.5.1 Energy Diagram of Intrinsic Semiconductor
192(1)
6.5.2 Holes, Mobility and Conductivity
193(1)
6.6 Extrinsic Semiconductors
194(5)
6.6.1 n-Type Semiconductors and their Energy Diagram
194(1)
6.6.2 Law of Mass Action
195(1)
6.6.3 p-Type Semiconductors and their Energy Diagram
195(4)
6.7 Effective Mass
199(1)
6.8 Density of State
200(2)
6.9 Temperature Dependency of Carrier Concentrations
202(3)
6.9.1 Temperature Dependency of n,
204(1)
6.10 Effects of Temperature on Mobility of Carriers
205(1)
6.10.1 Effects of Doping on Mobility
206(1)
6.11 Direct and Indirect Energy Band Semiconductors
206(2)
6.11.1 Differences between Direct and Indirect Semiconductors
208(1)
6.12 Variation of Eg with Alloy Composition
208(2)
6.12.1 Effect of Alloying on GaAs1-xPx
209(1)
6.12.2 Applications
210(1)
6.13 Degenerate Semiconductors
210(2)
6.13.1 Effect of Heavy Doping
211(1)
6.13.2 Degenerate Types
211(1)
6.14 Hall Effect
212(4)
6.14.1 Explanation of the Phenomenon
213(1)
6.14.2 Hall Voltage
213(1)
6.14.3 Significance of Hall Effect, Hall Coefficient etc.
214(2)
6.15 Analysis of Drift and Diffusion Currents
216(2)
6.15.1 Einstein Relation
217(1)
6.16 Continuity Equation
218(1)
6.17 Solved Examples
219(4)
Quick Revision Summary
223(1)
Review Questions
224(1)
Numerical Problems
225(1)
Objective Type Questions
226(3)
7 Semiconducting Materials: Types and Applications 229(34)
7.1 Element Form Semiconducting Materials
229(3)
7.1.1 Silicon
229(1)
7.1.2 Germanium
230(1)
7.1.3 Selenium (Se)
231(1)
7.1.4 Antimony (Sb)
231(1)
7.1.5 Other Elements
231(1)
7.1.6 Comparison between Silicon and Germanium
232(1)
7.2 Formulated (Compound and Alloyed) Semiconducting Materials
232(3)
7.2.1 Gallium Arsenide (GaAs)
232(2)
7.2.2 Indium Antimonide (InSb)
234(1)
7.2.3 Oxides, Sulphides, Halides, Tellurides and Sellurides
234(1)
7.2.4 Cadmium Sulphide (CdS)
234(1)
7.2.5 Silicon Carbide (SiC)
235(1)
7.2.6 Lead Sulphide (PbS)
235(1)
7.3 Lattice Structures of Some Compound Semiconductors
235(2)
7.3.1 Structure of Zinc Sulphide
237(1)
7.4 Solar Cells
237(5)
7.4.1 Working Principle
238(1)
7.4.2 Construction and Working
238(1)
7.4.3 Factors Affecting the Efficiency of Solar Cells
239(1)
7.4.4 Solar Cell Fabrication and Materials
240(1)
7.4.5 Advantages and Limitations of Solar Cells
241(1)
7.4.6 Applications of Solar Cells
242(1)
7.5 Semiconductor Lasers
242(5)
7.5.1 Merits of Semiconductor Lasers
243(1)
7.5.2 Characteristics and Working
243(1)
7.5.3 Laser Applications
243(2)
7.5.4 Materials for Semiconductor Lasers
245(2)
7.6 Optical Materials in Light Emitting Diodes
247(2)
7.6.1 Construction and Working of LED
247(1)
7.6.2 Advantages, Applications and Specifications of LEDs
247(1)
7.6.3 Applications and Specifications of LEDs
248(1)
7.6.4 Light Emitting Materials
248(1)
7.7 Materials for Optical Fibres
249(4)
7.7.1 Construction
250(1)
7.7.2 Types of Optical Fibres
250(1)
7.7.3 Suitable Materials and their Requirements
251(1)
7.7.4 Advantages and Applications
252(1)
7.7.5 Applications of Optical Fibres
252(1)
7.8 Choicest Materials for Different Semiconductor Devices
253(1)
7.9 Solved Examples
254(3)
Quick Revision Summary
257(1)
Review Questions
258(1)
Objective Questions
259(4)
8 Semiconducting Materials: Processing and Devices 263(38)
8.1 Production of Element Form Of Silicon (Si)
263(1)
8.2 Semiconductor Crystal Growth
264(2)
8.2.1 Bridgman Method
264(1)
8.2.2 Czochralski Method
265(1)
8.3 Processing of Semiconducting Materials
266(1)
8.4 Zone Refining
266(2)
8.4.1 Zone Refining Apparatus
268(1)
8.5 Manufacturing of Wafers
268(1)
8.5.1 Photolithography
269(1)
8.6 Semiconductors Fabrication Technology
269(2)
8.6.1 Microelectronic Circuit Construction
270(1)
8.6.2 Thin Film Circuit Fabrication
270(1)
8.7 Fabrication of a Semiconductor P-N Junction
271(1)
8.8 Transistor Manufacturing Processes
271(1)
8.9 Semiconducting Devices and Their Operating Principle
271(3)
8.10 Important Applications of Semiconductor Devices
274(1)
8.11 Brief Description of Some Semiconductor Devices
275(1)
8.12 P-N Junction Diode
276(3)
8.12.1 Applications of P-N Diode
277(1)
8.12.2 Biasing
277(2)
8.13 Working of P-N Diode When not Connected to a Battery
279(1)
8.13.1 Diffusion of Holes and Electrons in P-N Diode
279(1)
8.13.2 Set-up of Barrier in P-N Diode
279(1)
8.13.3 Formation of Depletion (or Space Charge) Region in P-N Diode
279(1)
8.13.4 Flow of Drift and Diffusion Current in P-N Diode
280(1)
8.14 Different Types of P-N Junction Diodes
280(1)
8.14.1 The Gunn Diode Materials and Fabrication
281(1)
8.15 Junction Transistors
281(1)
8.15.1 Different Categories of Transistors
282(1)
8.16 Bipolar Junction Transistor (BJT)
282(3)
8.16.1 Construction of BJT
282(3)
8.17 Field-Effect Transistor (FET)
285(1)
8.17.1 Advantages of FETs over BJTs
285(1)
8.17.2 Differences between FETs and BJTs
285(1)
8.17.3 Applications of FETs
285(1)
8.18 Metal-Semiconductor Field-Effect Transistors (MESFET)
286(2)
8.18.1 Basic Construction of MESFETs
286(1)
8.18.2 Basic Types of MESFETs
287(1)
8.19 Insulated Gate Field Effect Transistor (IGFET) or Metal-Insulator-Semiconductor Field-Effect Transistor (MISFET)
288(1)
8.19.1 Construction of IGFET
289(1)
8.20 Charge Coupled Devices
289(1)
8.20.1 Salient Uses
290(1)
8.21 Solved Examples
290(4)
Quick Revision Summary
294(2)
Review Questions
296(2)
Objective Questions
298(3)
9 Dielectric Materials: Properties and Behaviour 301(42)
9.1 Introduction to Dielectric Materials
301(1)
9.2 Classification of Dielectric (or Insulating) Materials
302(2)
9.3 Main Properties
304(1)
9.4 Dielectric Constant
304(1)
9.4.1 Factors Affecting Dielectric Constant
304(1)
9.5 Dielectric Strength
305(2)
9.5.1 Types of Dielectric Breakdown
305(2)
9.6 Dielectric Loss
307(3)
9.6.1 Factors Affecting Dielectric Loss
308(1)
9.6.2 Calculation of Loss Factor
309(1)
9.7 Polarization
310(4)
9.7.1 Expression for Polarization under Static Electric Field
311(1)
9.7.2 Measurement of Polarization
311(3)
9.8 Mechanism of Polarization
314(2)
9.8.1 Electronic Polarization
314(1)
9.8.2 Ionic Polarization
315(1)
9.8.3 Orientation (Molecular) Polarization
315(1)
9.8.4 Space Charge (or Interfacial) Polarization
315(1)
9.9 Comparison of Different Polarization Processes
316(1)
9.9.1 Polarizability
316(1)
9.10 Factors Affecting Polarization
317(1)
9.10.1 Time Effects and Relaxation Time
317(1)
9.10.2 Frequency Effects
318(1)
9.11 Spontaneous Polarization
318(2)
9.11.1 Polarization Curve
319(1)
9.11.2 Polarization Hysteresis Loop
320(1)
9.11.3 Salient Features of Spontaneous Polarization
320(1)
9.12 Behaviour of Polarization Under Impulse and Frequency Switching
320(2)
9.12.1 Effect on Polarization When Electric Field is Switched-off
321(1)
9.12.2 Effect on Polarization When Electric Field is Switched-on
322(1)
9.13 Decay and Build-Up of Polarization Under Alternating Current (A.C.) Field
322(2)
9.13.1 Conclusion
324(1)
9.14 Complex Dielectric Constant
324(1)
9.15 Determining the Internal Field Due to Polarization Inside the Dielectric
325(4)
9.15.1 Formulation of the Problem for Solid Dielectric
325(2)
9.15.2 Contribution of Dipoles on Internal Field
327(1)
9.15.3 Determining Ei for 3-dimensional Case and Lorentz Expression
327(2)
9.16 Clausius-Mossotti Relation
329(3)
9.16.1 Relation between Electronic Polarizability and Polarization
329(3)
9.17 Solved Examples
332(5)
Quick Revision Summary
337(1)
Review Questions
338(1)
Numerical Problems
339(1)
Objective Questions
340(3)
10 Dielectric Materials: Types and Applications 343(36)
10.1 Solid Insulating Materials and their Applications
343(5)
10.1.1 Ceramic Insulating Materials
344(1)
10.1.2 Mica
344(2)
10.1.3 Porcelain
346(1)
10.1.4 Glass
346(1)
10.1.5 Micanite
347(1)
10.1.6 Glass Bonded Mica
348(1)
10.2 Polymeric Insulating Materials
348(2)
10.2.1 Bakelite
349(1)
10.2.2 Polyethylene
350(1)
10.3 Natural and Synthetic Rubber as Insulating Material
350(1)
10.3.1 Synthetic Rubber
350(1)
10.4 Paper as a Fibrous Insulating Material
351(1)
10.5 Choices of Solid Insulating Materials for Different Applications
351(3)
10.6 Liquid Insulating Materials
354(2)
10.6.1 Requirements of a Good Insulating Liquid
354(1)
10.6.2 Transformer Oil
354(1)
10.6.3 Bubble Theory for Breakdown of Liquid Insulation
355(1)
10.6.4 Ageing of Mineral Insulating Oils
355(1)
10.7 Gaseous Insulating Materials
356(2)
10.7.1 Air
356(1)
10.7.2 Nitrogen
357(1)
10.7.3 Vacuum
357(1)
10.7.4 Vacuum as Reflective Insulation
358(1)
10.8 Ferroelectric Materials
358(1)
10.8.1 Anti-Ferroelectric Materials
359(1)
10.9 Barium Titanate: A Ferroelectric Ceramic
359(2)
10.9.1 Effect of Temperature on Structure of BaTiO3
360(1)
10.10 Modified Barium Titanate
361(1)
10.11 PLZT as an Electro-Optic Material
362(1)
10.12 Piezoelectricity
363(3)
10.12.1 Characteristics and Uses
363(1)
10.12.2 Mechanism of Piezoelectricity
364(1)
10.12.3 Inverse Piezoelectric Effect
364(1)
10.12.4 Piezoelectric Materials
365(1)
10.12.5 Effect of Temperature on Piezoelectric Crystal
365(1)
10.13 Piezoelectrics in Transducer Uses
366(1)
10.13.1 Working of Piezoelectric Transducer
366(1)
10.14 Relation Between Young's Modulus and Electric Field in Piezoelectric Material
367(3)
10.15 Electrostriction
370(1)
10.16 Pyroelectricity
370(2)
10.16.1 Pyroelectric Effect
371(1)
10.16.2 Pyroelectric Coefficient
371(1)
10.16.3 Pyroelectric Devices
371(1)
10.17 Lead Zirconate Titanate (PZT): A Piezoelectric Ceramic
372(1)
10.17.1 Different Types of PZTs and Their Uses
372(1)
10.18 Lead Lanthanum Zirconate Titanate (PLZT)
373(1)
10.18.1 General Formula and Hysteresis Loop of PLZT
373(1)
10.19 Solved Examples
374(1)
Quick Revision Summary
375(1)
Review Questions
376(1)
Numerical Problems
377(1)
Objective Questions
378(1)
11 Magnetic Materials: Properties and Behaviour 379(44)
11.1 Origin of Permanent Magnetic Dipole
379(1)
11.1.1 Spinning Electrons Acting as Extremely Small Magnets
379(1)
11.2 Terminologies Defined
380(4)
11.2.1 Relation between Relative Permeability and Magnetic Susceptibility
382(2)
11.3 Classification of Magnetic Materials
384(2)
11.3.1 Distribution of Magnetic Moments
385(1)
11.4 Diamagnetism and Diamagnetic Materials
386(1)
11.4.1 Negative Susceptibility
386(1)
11.5 Paramagnetism and Paramagnetic Materials
386(1)
11.5.1 Rare-earth Based Paramagnetic Salts
387(1)
11.6 Ferromagnetism and Ferromagnetic Materials
387(1)
11.7 Antiferromagnetism and Antiferromagnetic Materials
387(2)
11.7.1 Maximum Susceptibility and Neel Temperature
388(1)
11.8 Ferrimagnetism and Ferrites
389(3)
11.8.1 Properties of Ferrites
389(1)
11.8.2 Applications of Ferrites
389(1)
11.8.3 Soft and Hard Ferrites
390(1)
11.8.4 Spinel, Garnet and Magnetoplumbite
390(1)
11.8.5 Normal and Inverse Spinel
391(1)
11.8.6 Garnets
391(1)
11.8.7 Ferrites in Memory Devices
391(1)
11.9 Curie Temperature
392(2)
11.9.1 Requirement of Higher and Lower Curie Temperature for Different Applications
393(1)
11.10 Laws of Magnetic Materials
394(1)
11.10.1 Effect of Temperature on Magnetic Susceptibility
395(1)
11.11 Magnetization Curve, and Initial and Maximum Permeability
395(3)
11.11.1 Magnetic Hysteresis Loop (or Cycle Magnetization)
396(2)
11.12 Hysteresis and Eddy Current Losses
398(3)
11.12.1 Eddy Current Loss per Unit Volume
398(3)
11.13 Domain Theory
401(1)
11.14 Magnetostriction
402(2)
11.14.1 Salient Features of Magnetostriction
402(1)
11.14.2 Mechanism of Magnetostriction
403(1)
11.14.3 Magnetostrictive Materials
403(1)
11.15 Ferromagnetic Anisotropy
404(2)
11.15.1 Anisotropy in Single Crystal
405(1)
11.15.2 Soft and Hard Directions
405(1)
11.15.3 Methods of Inducing Magnetic Anisotropy
405(1)
11.16 Domain Growth and Domain Wall Rotation
406(1)
11.17 Derivation of Langevin's Theory of Diamagnetism and Expression For Diamagnetic Susceptibility
407(3)
11.17.1 Larmor Precession
408(1)
11.17.2 Determining the Diamagnetic Susceptibility
409(1)
11.18 Derivation of Langevin's Theory of Paramagnetism and Expression for Paramagnetic Susceptibility
410(2)
11.18.1 Determining the Intensity of Magnetization
410(1)
11.18.3 Determining the Paramagnetic Susceptibility
411(1)
11.19 Solved Examples
412(1)
Quick Revision Summary
413(2)
Review Questions
415(2)
Numerical Problems
417(2)
Objective Questions
419(4)
12 Magnetic Materials: Types and Applications 423(26)
12.1 Types of Magnetic Materials
423(1)
12.2 Magnetic Materials
424(1)
12.3 Soft Magnetic Materials
425(1)
12.3.1 Transformer Purpose Sheet Form Magnetic Material
425(1)
12.3.2 Powder Form Magnetic Material
425(1)
12.4 Hard Magnetic Materials
426(2)
12.4.1 Soft Magnetic Materials Versus Hard Magnetic Materials
427(1)
12.5 High Energy (Product) Hard Magnetic Materials (HEHMMs)
428(2)
12.5.1 Samarium-Cobalt Rare Earth
428(1)
12.5.2 Neodymium-Iron-Boron Alloy
429(1)
12.6 Commercial Grade Soft Magnetic Materials
430(1)
12.7 Commercial Grade Hard Magnetic Materials
431(2)
12.8 Ferrites in Memory Devices
433(1)
12.9 Magnetic Storage
434(1)
12.9.1 Magnetic Tapes and Films
435(1)
12.10 Metallic Glasses
435(4)
12.10.1 Interesting Amorphous Material
435(1)
12.10.2 Unusual Properties of Metallic Glasses
436(1)
12.10.3 Fabrication of Metallic Glass
436(2)
12.10.4 Materials System and Salient Applications of Metallic Glasses
438(1)
12.10.5 Applications
438(1)
12.10.6 Metallic Glasses in Electronic Uses
438(1)
12.11 Magnetic Bubbles
439(2)
12.11.1 Working Principle
439(1)
12.11.2 Moving the Magnetic Bubble
440(1)
12.11.3 Information Storage Density
441(1)
12.12 Effects of Alloying Elements on Magnetic Properties
441(1)
12.13 Textured Magnetic Materials
441(1)
12.14 Amorphous (or Oxide) Magnetic Materials
442(1)
12.15 Powder Magnetic Materials
442(1)
12.16 Solved Examples
442(1)
Quick Revision Summary
443(2)
Review Questions
445(1)
Objective Questions
446(3)
13 Superconductive Materials 449(28)
13.1 Concept of Superconductors
449(1)
13.1.1 Meaning of the Phenomenon of Superconductivity
449(1)
13.2 Properties of Superconductors
450(3)
13.2.1 Meissner Effect
450(3)
13.3 Types of Superconductors
453(1)
13.3.1 Effect of Pressure and Temperature on Superconductivity
453(1)
13.4 Critical Magnetic Field and Critical Temperature
454(2)
13.4.1 Effect of Isotopic Mass on Critical Temperature
454(1)
13.4.2 Silsbee Rule
455(1)
13.4.3 Important Terminologies
456(1)
13.5 Ideal and Hard Superconductors
456(1)
13.6 Mechanism of Super-conduction
456(1)
13.6.1 Various Theories of Superconductivity
457(1)
13.7 London's Theory For Type I Superconductors
457(1)
13.8 GLAG Theory For Type II Superconductors
458(2)
13.8.1 Distinguishing Between the Type I and Type II Superconductors
458(1)
13.8.2 Variation of Magnetic Field
459(1)
13.9 BCS Theory
460(4)
13.9.1 Super-current
460(1)
13.9.2 Phonon and Photon
460(1)
13.9.3 Electron-Phonon Interaction
461(1)
13.9.4 Reason of Two Electrons Forming a Pair
461(1)
13.9.5 Cause of Resistance for Superconductor being Zero
461(1)
13.9.6 Relationship between Coherence Length and Energy Gap
462(1)
13.9.7 Debye Temperature
462(2)
13.10 Current Applications and Limitations
464(1)
13.10.1 Limitations of Superconductors
464(1)
13.10.2 Likely Futuristic Scenario
464(1)
13.11 Milestones in Research and Development of Superconductors
465(2)
13.11.1 Modern Ceramic Superconductors
466(1)
13.12 Present Scenario of the Main Applications of High Temperature Superconductors
467(1)
13.13 Producing the Superconducting Solenoids and Magnets
468(1)
13.14 MRI for Medical Diagnostics
469(1)
13.14.1 Magnet as a Critical Component
469(1)
13.14.2 Superconducting Magnet
469(1)
13.15 Solved Examples
470(2)
Quick Revision Summary
472(1)
Review Questions
472(1)
Numerical Problems
473(1)
Objective Questions
473(4)
14 Passive Components (Resistors) 477(26)
14.1 Passive and Active Components
477(1)
14.2 Introduction to Resistors
478(3)
14.2.1 Characteristics of Resistors
479(2)
14.3 Manufacturing Method of a Resistor
481(1)
14.4 Basic Classification of Resistors
482(2)
14.4.1 Specific Types of Resistors
483(1)
14.4.2 Different Types of Resistors: Materials and Applications
484(1)
14.5 Constructional Details of Different Kinds of Fixed Resistors
484(6)
14.5.1 Construction of Carbon Composition Resistor
484(1)
14.5.2 Construction of Carbon Film Resistor
485(1)
14.5.3 Construction of Metal Film Resistors
486(1)
14.5.4 Construction of Wire-Wound Resistor
487(1)
14.5.5 Construction of Circuit Breaker Resistors
488(1)
14.5.6 Construction of High Value Resistors
489(1)
14.6 Comparison Among Different Types of Fixed Resistors
490(1)
14.7 Specifications of Resistors
490(3)
14.7.1 Symbolic Representation of Resistors
491(1)
14.7.2 Identification of Resistors
491(2)
14.8 Variable Resistors (i.e. Varistors)
493(2)
14.8.1 Carbon Composition Variable Resistor
493(1)
14.8.2 Wire Wound Variable Resistor
494(1)
14.8.3 Cermets Type Variable Resistor
494(1)
14.8.4 Characteristics of Variable Resistors
494(1)
14.9 Non-Linear Resistors
495(1)
14.10 Thermistors
496(2)
14.10.1 NTC Thermistors
496(1)
14.10.2 PTC Thermistors
497(1)
14.10.3 Applications of Thermistors
497(1)
14.10.4 Specifications of Thermistors
498(1)
14.11 Solved Examples
498(2)
Review Questions
500(3)
15 Passive Components (Capacitors) 503(30)
15.1 Capacitor: an Introduction
503(3)
15.1.1 Equivalent Circuit
504(1)
15.1.2 Major Applications of Capacitors
505(1)
15.1.3 Important Materials Used for Capacitors
505(1)
15.2 Characteristics of Capacitors
506(2)
15.3 Classification of Capacitors
508(1)
15.4 Forms and Materials of Common Types of Capacitors
509(1)
15.5 Constructional Details of Fixed Value Capacitors
510(2)
15.5.1 Mica Dielectric Capacitor
510(1)
15.5.2 Paper Capacitor
511(1)
15.6 Plastic Film Capacitors
512(2)
15.6.1 Metalized Plastic Film Dielectric Capacitors
512(1)
15.6.2 Foil and Plastic Film Capacitors
513(1)
15.6.3 Mixed Dielectric Capacitors
513(1)
15.7 Ceramic Dielectric Capacitors
514(2)
15.7.1 Classes of Ceramic Dielectrics
514(1)
15.7.2 Applications
515(1)
15.8 Electrolytic Capacitors
516(2)
15.8.1 Aluminium Electrolytic Capacitor
517(1)
15.9 Tantalum Electrolytic Capacitor
518(1)
15.9.1 Tantalum Foil capacitors
518(1)
15.9.2 Tantalum Solid Capacitor
518(1)
15.10 Air Capacitor
519(1)
15.11 Polarized and Non-Polarized Capacitors
519(2)
15.11.1 Non-Polarized Capacitors
520(1)
15.12 Variable Capacitors
521(2)
15.12.1 Air Variable Capacitor
521(1)
15.12.2 Ceramic Variable Capacitor
522(1)
15.12.3 Glass Capacitors
522(1)
15.13 Specifications of Capacitors
523(2)
15.13.1 Symbolic Representation of Capacitors
524(1)
15.14 Identification of Capacitors
525(2)
15.14.1 Colour Codes for Tubular Ceramic Capacitors
525(1)
15.14.2 Colour Code for Mica Capacitors
525(2)
15.14.3 Marking of Capacitors
527(1)
15.15 Solved Examples
527(2)
Review Questions
529(4)
16 Printed Circuit Board (PCB) Fabrication 533(28)
16.1 Printed Circuit Board
533(2)
16.1.1 Advantages of PCBs
534(1)
16.2 Types of PCBs
535(2)
16.2.1 Measures of Level of Complexity in PCB
536(1)
16.3 Types of PCB Substrates (or Laminates)
537(5)
16.3.1 Merits and Demerits of Different PCB Laminates
538(2)
16.3.2 Fabrication of laminate and Reinforcing Materials
540(1)
16.3.3 Properties of Different PCB Laminates and Commercial Grade Copper Cladded Laminates
540(2)
16.4 Manufacturing Process of Copper Cladded Laminate
542(3)
16.4.1 Processing of a Copper Cladded Laminate
543(1)
16.4.2 Desired Properties of Copper-Cladded Laminates
544(1)
16.5 Layout and Design of a Printed Circuit Board
545(2)
16.5.1 Planning of the PCB Layout
545(1)
16.5.2 Design Considerations in Making PCBs
546(1)
16.6 Manufacturing Processes For PCB
547(6)
16.6.1 Preprocessing
547(1)
16.6.2 Photolithography
548(1)
16.6.3 Etching
549(1)
16.6.4 Drilling
550(1)
16.6.5 Solder Masking
551(1)
16.6.6 Electroplating
551(1)
16.6.7 Board Testing
552(1)
16.6.8 Board Finishing
552(1)
16.7 Manufacturing of Single Sided PCBs
553(1)
16.8 Manufacturing of Double-Sided PCBs
554(3)
16.8.1 Logic Layer Processing
554(2)
16.8.2 Outer Layer Processing
556(1)
16.9 Solved Examples
557(2)
Review Questions
559(2)
17 Optical Properties of Materials, and Materials for Opto-Electronic Devices 561(32)
17.1 Introduction
561(2)
17.1.1 Important Terminologies Related to Optical Materials
562(1)
17.2 Optical Phenomena
563(1)
17.2.1 Interaction of Light with Solids
563(1)
17.2.2 Types of Optical Materials
564(1)
17.3 Reflection
564(1)
17.4 Refraction
565(3)
17.4.1 Refractive Index
565(2)
17.4.2 Bi-Refringence
567(1)
17.4.3 Relation between Refractive Index and Dielectric Constant
568(1)
17.5 Transmittivity
568(1)
17.6 Scattering
569(1)
17.7 Optical Absorption
569(6)
17.7.1 Capability of a Material to Absorb Light
570(1)
17.7.2 Mechanism of Optical Absorption
571(1)
17.7.3 Absorption Coefficient
571(1)
17.7.4 Factors Affecting the Absorption Coefficient
572(3)
17.7.5 The Absorption Spectra of Materials
575(1)
17.8 Optical Properties of Non-Metals
575(1)
17.9 Optical Properties of Metals
576(1)
17.9.1 Reasons of Copper Appearing Reddish-orange, Silver and Aluminium White, and Gold Yellow
576(1)
17.10 Optical Properties of Semiconductors
577(1)
17.10.1 Visibility Range of Light Spectrum
577(1)
17.11 Optical Properties of Insulators
578(1)
17.11.1 Optical Absorption in Ionic Crystals
578(1)
17.12 Luminescence
579(2)
17.12.1 Different Types of Luminescence
579(1)
17.12.2 Photo-Luminescence
580(1)
17.12.3 Electro-Luminescence
580(1)
17.13 Opto-Electronic Devices
581(1)
17.14 Photoconductivity
581(3)
17.14.1 Applications of Photoconductive Devices
582(1)
17.14.2 Photoconductive Materials
582(1)
17.14.3 Factors Affecting the Selection of Semiconductor
583(1)
17.15 Photoconductive Cell
584(2)
17.15.1 Photo-multiplier Tube
585(1)
17.16 Solved Examples
586(2)
Quick Revision Summary
588(2)
Review Questions
590(1)
Numerical Problems
591(1)
Objective Questions
591(2)
18 Specific Materials for Electrical, Electronics, Computers, Instruments, Robotics, and Other Applications 593(38)
18.1 Recent Developments
593(1)
18.2 Specific Materials for Electrical Applications
594(2)
18.3 Specific Materials For A Typical Battery
596(3)
18.3.1 Separator and its Materials
596(1)
18.3.2 Gridwork Construction of Plates
597(2)
18.4 Specific Materials for Electronics Applications
599(2)
18.5 Specific Materials for Computer Applications
601(1)
18.6 Specific Materials for Instruments and Control Applications
601(1)
18.7 Materials Used in Robots Construction
601(1)
18.8 Information Transmission from Cricket Field to Worldwide Televisions
602(2)
18.9 Specific Materials for Networking Applications
604(10)
18.9.1 Networking of Networks and Connecting Devices
606(4)
18.9.2 Hardware Used in Networking
610(4)
18.10 Specific Electronic, Computer, and Robotic Components; and Their Materials in Automobile Applications
614(9)
18.10.1 Recent Advances in Automotive Electronics
615(1)
18.10.2 Multiplexing in Automobiles
616(1)
18.10.3 Sensors and Actuators, and Their Materials
617(1)
18.10.4 Engine and Driveline Control
617(1)
18.10.5 Electronic Displays and Information Systems
618(1)
18.10.6 Shape of Things to Come
619(1)
18.10.7 Future Technologies and Designs
620(1)
18.10.8 Optical Technology
621(1)
18.10.9 Electrical and other Materials in Important Automobile Uses
622(1)
18.11 Pen Drives (or Flash Memory) and Its Materials
623(2)
18.12 Remote Control Devices and Materials Used in Them
625(1)
18.13 Hand Held Devices and Materials Used in Them
626(3)
References
629(2)
19 Recent Advances and Emerging Trends in Electrical and Electronic Materials 631(46)
19.1 Novel Applications of Functionally Graded Nano, Optoelectronic and Thermoelectric Materials
631(2)
19.1.1 Introduction to Functionally Graded Materials (FGMs)
632(1)
19.2 CNT Reinforced FGM Composites
633(1)
19.2.1 Applications of CNT in FGM
633(1)
19.3 FGM in Optoelectronic Devices
634(1)
19.3.1 Possible Applications of FGM in Optoelectronics
634(1)
19.3.2 High-Efficient Photodetectors and Solar Cells
635(1)
19.4 Advanced Thermoelectric Materials in Electrical and Electronic Applications
635(5)
19.4.1 Introduction
636(1)
19.4.2 Thermoelectric Power Generator for Integration in Wearable Microsystems
637(1)
19.4.3 Nano-Thermocouple in Thermoelectric Energy Harvesting
637(1)
19.4.4 Low-Cost Micro-Thermoelectric Coolers for Microelectronic Products
638(1)
19.4.5 Thermoelectric Water-Cooling Device for Electronic Equipment
639(1)
19.4.6 Conclusion
640(1)
19.5 Frontiers in Electronic Materials Research
640(1)
19.5.1 Introduction
641(1)
19.6 New Pyroelectric Thin Composite Films
641(1)
19.7 Composite and Nanocomposite Polymer Electrolytes for Electrochemical Energy Sources
642(2)
19.8 Novel Nanostructured Materials for A Variety of Renewable Energy Applications
644(1)
19.9 Critical Fields in Lithium Niobate Nano Ferroelectrics
645(1)
19.10 Nanoengineering of Wood Fibres for Conducting Paper
645(1)
19.11 Effects of E - Waste on Environment and Their Solution by Reclamation of Green Materials From the Waste
646(7)
19.11.1 Introduction
647(1)
19.11.2 Major Sources of E-Waste
648(1)
19.11.3 Constituent Materials of E-Waste
649(1)
19.11.4 Estimation of the Quantity of E-Waste
649(1)
19.11.5 Problems Created by E-Waste
649(1)
19.11.6 Electronic Waste Reclamation
650(1)
19.11.7 Electronic Waste Recovery and Recycling
651(1)
19.11.8 Advanced Methods of Environmental-Friendly Recycling
651(1)
19.11.9 Status of Possible Recovery of Useful Materials from E-Waste in India
652(1)
19.11.10 Conclusions
653(1)
19.12 Plastics in Electrical and Electronics Applications
653(3)
19.12.1 Expanding Plastics
653(1)
19.12.2 Conducting Polymers
654(1)
19.12.3 Polymers in Electronics
654(1)
19.12.4 Liquid Crystal Polymers (LCP)
655(1)
19.12.5 Photocurable Polymers
655(1)
19.12.6 Photorefractive Polymers
656(1)
19.13 Composite Materials for Electronics Applications
656(4)
19.13.1 Magneto-Eletro-Elastic Composite
657(1)
19.13.2 Magnetic Composites
657(1)
19.13.3 Ferrite-Silica Hybridized Composite
658(1)
19.13.4 Composite Electronic Packaging Material
658(1)
19.13.5 Magnetostrictive Material-Shape Memory Piezoelectric Actuator Composite
659(1)
19.14 Electrical Behaviour of Ceramics
660(1)
19.14.1 Applications of Ceramics
660(1)
19.15 Giant Magneto-Resistance (GMR)
661(1)
19.16 Ferrorfluids (or Magnetic Fluids)
661(3)
19.16.1 Types of Ferrofluids
662(1)
19.16.2 Properties of Ferrofluids
663(1)
19.17 Information Storage Density
664(1)
19.17.1 Rare-Earth Aluminates as a Charge Trapping Materials for Nand Flash Memories
664(1)
19.18 Magnetocaloric Materials
665(2)
19.18.1 Magnetocaloric Materials
665(1)
19.18.2 Working Principle
666(1)
19.18.3 Applications of Magnetocolorific Materials
666(1)
19.19 Magneto-Dielectric Materials
667(3)
19.19.1 Applications of Magneto-Dielectrics
668(1)
19.19.2 Different Types of Magento-Dielectric Materials
668(1)
19.19.3 Merits of Magneto-Dielectric Materials
669(1)
19.20 Biomimetics and Biomimetic Materials in Electrical and Electronics Applications
670(3)
19.20.1 Nanotechnology Used to Harness the Power of Fireflies
670(1)
19.20.2 Biomimetic Coating for Electric Transmission
671(1)
19.20.3 Optical Biomimetics: Materials and Applications
672(1)
19.20.4 Display Technology Inspired by Butterfly
672(1)
References
673(4)
Appendix I: SI Prefixes of Multiples and Submultiples 677(2)
Appendix II: Greek Alphabet 679(2)
Appendix III: Conventions to be Followed While Using SI UNIT 681(2)
Appendix IV: Physical Constants 683(2)
Appendix V: Conversion Factors 685(2)
Glossary of Terminologies 687(12)
Answers to Numerical Questions 699(6)
Answers to Objective Questions 705(4)
Index 709
K.M. Gupta is a professor in the Department of Applied Mechanics, Motilal Nehru National Institute of Technology, Allahabad, India where he teaches materials science, engineering mechanics, thermodynamics of materials, electrical and electronic materials. He has more than 38 years of teaching, research and consultancy experience and obtained PhD from the University of Allahabad. He has authored 28 books and edited 2 books on Engineering subjects as well as 110 research papers in peer-reviewed Journals.

Nishu Gupta is a research scholar in the department of Electronics and Communication Engineering, Motilal Nehru National Institute of Technology, Allahabad, India. He received his M.Tech. degree in Nanoscience and Technology from Delhi Technological University. Prior to starting his current position, he served as a software engineer with Infosys Technologies limited, and has senior software engineer at Tech Mahindra. His research interests are in the fields of semiconductor devices, hybrid solar cells, photonics, nano-optics and related fields.