Muutke küpsiste eelistusi

Advanced Internet Protocols, Services, and Applications [Kõva köide]

, , (NTT Network Service Systems Laboratories, Tokyo, Japan),
  • Formaat: Hardback, 260 pages, kõrgus x laius x paksus: 244x163x19 mm, kaal: 508 g
  • Ilmumisaeg: 15-May-2012
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 0470499036
  • ISBN-13: 9780470499030
Teised raamatud teemal:
  • Formaat: Hardback, 260 pages, kõrgus x laius x paksus: 244x163x19 mm, kaal: 508 g
  • Ilmumisaeg: 15-May-2012
  • Kirjastus: John Wiley & Sons Inc
  • ISBN-10: 0470499036
  • ISBN-13: 9780470499030
Teised raamatud teemal:
Today, the internet and computer networking are essential parts of business, learning, and personal communications and entertainment. Virtually all messages or transactions sent over the internet are carried using internet infrastructure- based on advanced internet protocols. Advanced internet protocols ensure that both public and private networks operate with maximum performance, security, and flexibility.

This book is intended to provide a comprehensive technical overview and survey of advanced internet protocols, first providing a solid introduction and going on to discuss internetworking technologies, architectures and protocols. The book also shows application of the concepts in next generation networks and discusses protection and restoration, as well as various tunnelling protocols and applications. The book ends with a thorough discussion of emerging topics.

Preface xi
Acknowledgments xv
About the Authors xvii
1 Transmission Control Protocol/Internet Protocol Overview
1(18)
1.1 Fundamental Architecture
1(3)
1.2 Internet Protocol Basics
4(9)
1.2.1 Packet Header
5(2)
1.2.2 Internet Protocol Address
7(1)
1.2.3 Internet Protocol Classification
7(2)
1.2.4 Subnet and its Masking
9(2)
1.2.5 Subnet Calculation
11(2)
1.3 Routing
13(6)
1.3.1 Routing across Providers
14(1)
1.3.2 Routing within Edge Networks
15(1)
1.3.3 Routing Scalability
16(2)
References
18(1)
2 Transport-Layer Protocols
19(12)
2.1 Transmission Control Protocol
19(6)
2.1.1 Transmission Control Protocol Header Structure
19(1)
2.1.2 Three-Way Handshake
20(1)
2.1.3 Transmission Control Protocol Flow Control and Congestion Control
21(3)
2.1.4 Port Number
24(1)
2.2 User Datagram Protocol
25(1)
2.2.1 User Datagram Protocol Header Structure
25(1)
2.3 Stream Control Transmission Protocol
26(3)
2.3.1 Stream Control Transmission Protocol Packet Structure
26(1)
2.3.2 Security: Prevention of SYN Attacks
27(2)
2.4 Real-Time Transport Protocol
29(2)
2.4.1 Real-Time Transport Protocol Header Structure
29(1)
References
30(1)
3 Internet Architecture
31(8)
3.1 Internet Exchange Point
31(2)
3.2 History of Internet Exchange Points
33(1)
3.3 Internet Service Provider Interconnection Relationships
34(1)
3.4 Peering and Transit
35(4)
References
37(2)
4 IP Routing Protocols
39(20)
4.1 Overview of Routing Protocols
40(3)
4.1.1 Interior Gateway Protocol
41(1)
4.1.2 Exterior Gateway Protocol
42(1)
4.2 Routing Information Protocol
43(5)
4.2.1 Routing Information Protocol Header Format
43(1)
4.2.2 Update of Routing Table in Routing Information Protocol
44(2)
4.2.3 Maintenance of Routing Table in Routing Information Protocol
46(1)
4.2.4 Split Horizon
47(1)
4.2.5 Limitations of Routing Information Protocol
47(1)
4.3 Open Shortest Path First
48(5)
4.3.1 Shortest-Path Algorithm
48(3)
4.3.2 Hierarchical Routing
51(1)
4.3.3 Open Shortest Path First Packet Format
51(1)
4.3.4 Comparison of Routing Information Protocol and Open Shortest Path First
52(1)
4.4 Border Gateway Protocol
53(6)
4.4.1 Border Gateway Protocol Message Flows
53(1)
4.4.2 Border Gateway Protocol Policy Selection Attributes
54(3)
References
57(2)
5 Multiprotocol Label Switching
59(16)
5.1 Overview
59(4)
5.2 Functions and Mechanisms
63(4)
5.3 Applicabilities
67(8)
References
72(3)
6 IP Quality Of Service
75(18)
6.1 Introduction
75(1)
6.2 Quality of Service in IP Version 4
75(2)
6.3 Integrated Services
77(4)
6.3.1 Packet Scheduler
77(1)
6.3.2 Packet Classifier
77(1)
6.3.3 Admission Control
78(1)
6.3.4 Resource Reservation Protocol (RSVP)
79(2)
6.4 Differentiated Services
81(1)
6.5 Quality Of Service with Nested Differentiated Services Levels
82(11)
6.5.1 Drawbacks of Explicit Endpoint Admission Control with Path Selection
84(1)
6.5.2 OSPF-Based Adaptive and Flexible Quality of Service Provisioning
85(1)
6.5.3 Combination of Security and Quality of Service
86(1)
6.5.4 Path Selection Algorithm Analysis
87(3)
References
90(3)
7 IP Multicast and Anycast
93(16)
7.1 Addressing
93(3)
7.1.1 Multicast Addressing
93(2)
7.1.2 Differences between Multicasting and Multiple Unicasting
95(1)
7.2 Multicast Routing
96(1)
7.2.1 Optimal Routing: Shortest-Path Trees
96(1)
7.2.2 Unicast Routing
96(1)
7.2.3 Multicast Routing
96(1)
7.3 Routing Protocols
97(5)
7.3.1 Multicast Open Shortest Path First (MOSPF)
98(1)
7.3.2 Distance Vector Multicast Routing Protocol
99(1)
7.3.3 Core-Based Tree (CBT) Protocol
100(1)
7.3.4 Protocol-Independent Multicast
101(1)
7.3.5 Simple Multicast Routing Protocol
101(1)
7.4 Anycasting
102(3)
7.4.1 Architectural Issues
103(1)
7.4.2 Anycast Addresses
103(1)
7.4.3 Differences between the Services Offered by IP Multicasting and IP Anycasting
104(1)
7.5 IPv6 Anycast Routing Protocol: Protocol-Independent Anycast---Sparse Mode
105(4)
References
106(3)
8 Layer-2 Transport over Packet
109(14)
8.1 Draft-Martini Signaling and Encapsulation
109(5)
8.1.1 Functionality
110(1)
8.1.2 Encapsulation
110(1)
8.1.3 Protocol-Specific Encapsulation
111(3)
8.2 Layer-2 Tunneling Protocol
114(9)
8.2.1 Layer-2 Tunneling Protocol Version 3
115(3)
8.2.2 Pseudowire Emulation Edge to Edge
118(3)
References
121(2)
9 Virtual Private Wired Service
123(14)
9.1 Types of Private Wire Services
123(7)
9.1.1 Layer-2 Virtual Private Services: Wide Area Networks and Local Area Networks
124(2)
9.1.2 Virtual Private Wire Service
126(1)
9.1.3 Virtual Private Multicast Service
127(1)
9.1.4 IP-Only Layer-2 Virtual Private Network
128(1)
9.1.5 Internet Protocol Security
129(1)
9.2 Generic Routing Encapsulation
130(1)
9.3 Layer-2 Tunneling Protocol
131(1)
9.4 Layer-3 Virtual Private Network 2547bis, Virtual Router
131(6)
9.4.1 Virtual Router Redundancy Protocol
133(3)
References
136(1)
10 IP and Optical Networking
137(14)
10.1 IP/Optical Network Evolution
138(2)
10.1.1 Where Networking Is Today
138(1)
10.1.2 Where Networking Is Going
139(1)
10.2 Challenges in Legacy Traditional IP/Optical Networks
140(2)
10.2.1 Proprietary Network Management Systems
140(1)
10.2.2 Complexity of Provisioning in Legacy IP/Optical Networks
141(1)
10.3 Automated Provisioning in IP/Optical Networks
142(2)
10.4 Control Plane Models for IP/Optical Networking
144(3)
10.4.1 Optical Internetworking Forum's Optical User Network Interface: Overlay Model
145(1)
10.4.2 Internet Engineering Task Force's Generalized Multiprotocol Label Switching: Peer Model
145(2)
10.5 Next-Generation MultiLayer Network Design Requirements
147(1)
10.6 Benefits and Challenges in IP/Optical Networking
148(3)
References
149(2)
11 IP Version 6
151(12)
11.1 Addresses in IP Version 6
152(2)
11.1.1 Unicast IP Addresses
152(1)
11.1.2 Multicast IP Addresses
153(1)
11.2 IP Packet Headers
154(1)
11.3 IP Address Resolution
155(1)
11.4 IP Version 6 Deployment: Drivers and Impediments
156(7)
11.4.1 Need for Backwards Compatibility
157(1)
11.4.2 Initial Deployment Drivers
158(2)
11.4.3 Reaching a Critical Mass
160(1)
References
161(2)
12 IP Traffic Engineering
163(18)
12.1 Models of Traffic Demands
163(2)
12.2 Optimal Routing with Multiprotocol Label Switching
165(4)
12.2.1 Overview
165(1)
12.2.2 Applicability of Optimal Routing
165(1)
12.2.3 Network Model
166(1)
12.2.4 Optimal Routing Formulations with Three Models
166(3)
12.3 Link-Weight Optimization with Open Shortest Path First
169(4)
12.3.1 Overview
169(1)
12.3.2 Examples of Routing Control with Link Weights
170(2)
12.3.3 Link-Weight Setting Against Network Failure
172(1)
12.4 Extended Shortest-Path-Based Routing Schemes
173(8)
12.4.1 Smart-Open Shortest Path First
174(1)
12.4.2 Two-Phase Routing
174(2)
12.4.3 Fine Two-Phase Routing
176(1)
12.4.4 Features of Routing Schemes
177(1)
References
177(4)
13 IP Network Security
181(16)
13.1 Introduction
181(1)
13.2 Detection of Denial-of-Service Attack
182(5)
13.2.1 Backscatter Analysis
182(2)
13.2.2 Multilevel Tree or Online Packet Statistics
184(3)
13.3 IP Traceback
187(2)
13.3.1 IP Traceback Solutions
189(1)
13.4 Edge Sampling Scheme
189(4)
13.5 Advanced Marking Scheme
193(4)
References
196(1)
14 Mobility Support for IP
197(38)
14.1 Mobility Management Approaches
199(6)
14.1.1 Host Routes
200(1)
14.1.2 Tunueling
201(2)
14.1.3 Route Optimization
203(2)
14.2 Security Threats Related to IP Mobility
205(8)
14.2.1 Impersonation
205(3)
14.2.2 Redirection-Based Flooding
208(2)
14.2.3 Possible Solutions
210(3)
14.3 Mobility Support in IPv6
213(5)
14.4 Reactive Versus Proactive Mobility Support
218(1)
14.5 Relation to Multihoming
219(1)
14.6 Protocols Supplementing Mobility
220(15)
14.6.1 Router and Subnet Prefix Discovery
220(1)
14.6.2 Movement Detection
221(1)
14.6.3 IP Address Configuration
222(1)
14.6.4 Neighbor Unreachability Detection
223(1)
14.6.5 Internet Control Message Protocol for IP Version 6
224(1)
14.6.6 Optimizations
224(3)
14.6.7 Media-Independent Handover Services
227(4)
References
231(4)
Index 235
EIJI OKI, PHD, is an Associate Professor at the University of Electro-Communications in Tokyo and was the recipient of the IEEE's 2001 Asia-Pacific Outstanding Young Researcher Award.

ROBERTO ROJAS-CESSA, PHD, is an Associate Professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology.

MALLIKARJUN TATIPAMULA, PHD, is Head of Packet Technologies Research at Ericsson Silicon Valley. He has over twenty years of experience in the telecommunications/networking industry, with more than 100 published papers and patents.

CHRISTIAN VOGT is a Senior Marketing Manager at Ericsson Silicon Valley.