Muutke küpsiste eelistusi

Advanced Metaheuristic Algorithms and Their Applications in Structural Optimization 2022 ed. [Pehme köide]

  • Formaat: Paperback / softback, 362 pages, kõrgus x laius: 235x155 mm, kaal: 672 g, 159 Illustrations, color; 1 Illustrations, black and white; X, 362 p. 160 illus., 159 illus. in color., 1 Paperback / softback
  • Sari: Studies in Computational Intelligence 1059
  • Ilmumisaeg: 19-Sep-2023
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031134311
  • ISBN-13: 9783031134319
Teised raamatud teemal:
  • Pehme köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 362 pages, kõrgus x laius: 235x155 mm, kaal: 672 g, 159 Illustrations, color; 1 Illustrations, black and white; X, 362 p. 160 illus., 159 illus. in color., 1 Paperback / softback
  • Sari: Studies in Computational Intelligence 1059
  • Ilmumisaeg: 19-Sep-2023
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031134311
  • ISBN-13: 9783031134319
Teised raamatud teemal:
The main purpose of the present book is to develop a general framework for population-based metaheuristics based on some basic concepts of set theory. The idea of the framework is to divide the population of individuals into subpopulations of identical sizes. Therefore, in each iteration of the search process, different subpopulations explore the search space independently but simultaneously. The framework aims to provide a suitable balance between exploration and exploitation during the search process. A few chapters containing algorithm-specific modifications of some state-of-the-art metaheuristics are also included to further enrich the book.





The present book is addressed to those scientists, engineers, and students who wish to explore the potentials of newly developed metaheuristics. The proposed metaheuristics are not only applicable to structural optimization problems but can also be used for other engineering optimization applications. The book is likely to be of interest to a wide range of engineers and students who deal with engineering optimization problems.
Introduction.- Set-Theoretical Shuffled Shepherd Optimization Algorithm for Optimal Design of Reinforced Concrete Cantilever Retaining Wall Structures.- Set-Theoretical Variants of the Teaching-Learning-Based Optimization Algorithm for Structural Optimization with Frequency Constraints.- Enhanced Versions of the Shuffled Shepherd Optimization Algorithm for Structural Optimization.- Set-Theoretical Metaheuristic Algorithms for Reliability-Based Design Optimization of Truss Structures.- Optimal Analysis in the Service of Frequency-Constrained Structural Optimization with Set-Theoretical Jaya Algorithm.- Discrete Structural Optimization with Set-Theoretical Jaya Algorithm.- Enhanced Forensic-Based Investigation Algorithm.- Improved Slime Mould Algorithm.- Improved Arithmetic Optimization Algorithm.