Muutke küpsiste eelistusi

Advances in Geocomputing [Multiple-component retail product]

  • Formaat: Multiple-component retail product, 325 pages, kõrgus x laius: 235x155 mm, kaal: 682 g, XVIII, 325 p. With DVD., 1 Item
  • Sari: Lecture Notes in Earth Sciences 119
  • Ilmumisaeg: 26-Mar-2009
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540858776
  • ISBN-13: 9783540858775
Teised raamatud teemal:
  • Multiple-component retail product
  • Hind: 141,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 166,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Multiple-component retail product, 325 pages, kõrgus x laius: 235x155 mm, kaal: 682 g, XVIII, 325 p. With DVD., 1 Item
  • Sari: Lecture Notes in Earth Sciences 119
  • Ilmumisaeg: 26-Mar-2009
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540858776
  • ISBN-13: 9783540858775
Teised raamatud teemal:
This book provides a concise overview of the recent development in geocomputing, which covers the model construction and result visualisation, advanced computational theory and high performance software development on supercomputers and their applications in simulating geodynamics, crustal dynamics, earthquakes, tsunami and rock physics spanning different scales. A DVD-ROM is attached together with this book for the image and animation files of the amazing simulation results.
First Steps Towards Modeling a Multi-Scale Earth System
1(26)
Klaus Regenauer-Lieb
Thomas Poulet
Delphine Siret
Florian Fusseis
Jie Liu
Klaus Gessner
Oliver Gaede
Gabriele Morra
Bruce Hobbs
Alison Ord
Hans Muhlhaus
David A. Yuen
Roberto Weinberg
Gideon Rosenbaum
Introduction
2(1)
Multiscale Non-Equilibrium Thermodynamics
3(7)
The Equilibrium Yardstick
3(2)
Non Equilibrium Thermodynamics and Multiscaling
5(1)
Coupling Mechanics and Chemistry
6(2)
Classical Brittle-Ductile Modeling
8(2)
Mathematical Formulation
10(10)
Classical Constitutive Approaches for the Lithosphere
10(2)
Energy Approach
12(3)
Scale Dependence of Ductile Shear Zones
15(2)
Intrinsic Length Scales for Brittle Faults
17(2)
Scale Dependence for Brittle Faults
19(1)
Discussion
20(7)
References
22(5)
3D Mesh Generation in Geocomputing
27(38)
Huilin Xing
Wenhui Yu
Ji Zhang
Introduction
28(4)
Geometrical Modeling
32(1)
Hexahedral Mesh Generation
33(16)
Introduction
33(2)
Fracture Dominated Reservoir System
35(4)
Meshing Interacting Fault System of South Australia with Mapped Block Method
39(4)
All Hexahedron Mesh Generation for a Whole-Earth Model
43(1)
The PREM whole-Earth model
43(1)
The Whole-Earth Crust with Plate Boundaries
44(5)
Tetrahedral Mesh Generation
49(10)
Introduction
49(1)
Automatic Tetrahedral Mesh Generation for the Stratigraphy Point Set
50(2)
Visualizing and Meshing with the Microseismicity Data
52(7)
Conclusions
59(6)
References
59(6)
Strategies for Preconditioning Methods of Parallel Iterative Solvers for Finite-Element Applications in Geophysics
65(54)
Kengo Nakajima
Background
65(7)
Why Preconditioned Iterative Solvers?
65(2)
Selective Blocking Preconditioning for Contact Problems
67(1)
GeoFEM Project
67(2)
Selective Blocking
69(1)
Overview of this Work
70(2)
Various Approaches for Parallel Preconditioning Methods in Ill-Conditioned Problems
72(14)
Selective Fill-Ins
72(4)
Selective Overlapping
76(3)
Local Reordering in Distributed Data
79(3)
HID (Hierarchical Interface Decomposition)
82(4)
Examples: Contact Problems
86(6)
Effect of Selective Fill-Ins and Selective Overlapping
86(2)
Effect of Local Reordering
88(2)
Effect of HID
90(2)
Examples: Linear-Elastic Problems with Heterogeneous Material Properties
92(11)
BILU(p+)-(d+,α)
92(1)
Problem Description
93(3)
Effect of Selective Fill-Ins and Selective Overlapping
96(2)
Effect of Local Reordering
98(3)
Effect of HID
101(2)
Concluding Remarks
103(4)
References
105(2)
Appendix 1: Parallel Iterative Solvers in GeoFEM
107(4)
Distributed Data Structure
107(2)
Localized Preconditioning
109(2)
Appendix 2: Selective Blocking
111(8)
Robust Preconditioning Methods for Ill-Conditioned Problems
111(3)
Strategy for Parallel Computations
114(2)
Large-Scale Computations
116(3)
Algorithms for Optimizing Rheology and Loading Forces in Finite Element Models of Lithospheric Deformation
119(20)
Youqing Yang
Mian Liu
Introduction
119(1)
Methodology
120(3)
A Plate Flexural Model
123(4)
A Three-Dimensional Viscous Model of Lithospheric Deformation
127(9)
Discussions and Conclusions
136(3)
References
137(2)
Mantle Dynamics --- A Case Study
139(44)
Klaus-D. Gottschaldt
Uwe Walzer
Dave R. Stegman
John R. Baumgardner
Hans B. Muhlhaus
Introduction
140(2)
Energy Budget of the Mantle
140(1)
Physics of Mantle Convection in a Nutshell
140(1)
Surface Tectonics
141(1)
Volcanism
141(1)
Core and Magnetism
141(1)
Composition
142(1)
Physics of Mantle Convection: Basic Equations
142(3)
Conservation of Mass
142(1)
Conservation of Momentum
143(1)
Conservation of Energy
143(1)
Equation of State
144(1)
Constitutive Relations
144(1)
Case Study: Stirring in Global Models of the Earth's Mantle
145(10)
Background
146(1)
Mantle Composition and Crustal Segregation
146(1)
Phase Transitions in the Mantle
146(2)
Geochemistry --- a Primer
148(1)
Geochemical Heterogeneities
149(1)
Mantle Degassing
150(1)
Interpretation of Reservoirs
150(1)
Age of Reservoirs
151(1)
Size of Reservoirs
151(1)
Reconciliation of Geophysical and Geochemical Constraints
152(3)
Model Setup
155(4)
Rheology
156(1)
Boundary Conditions
157(1)
Initial Conditions
158(1)
Numerics
159(2)
Mantle Convection Code: TERRA
159(1)
Treatment of Compositional Fields
160(1)
Definition of Two Components
160(1)
Model Results
161(5)
Discussion
166(4)
Influence of Geometry
167(1)
Influence of Rheology
167(2)
Influence of Initial Conditions
169(1)
Minor Influences
170(1)
Conclusions
170(13)
Relevance for the Earth
171(2)
Other Hints for a Change of Convective Mode
173(1)
Outlook
174(1)
References
175(8)
The ESyS_Particle: A New 3-D Discrete Element Model with Single Particle Rotation
183(46)
Yucang Wang
Peter Mora
Introduction: A Review of the Discrete Element Method
183(6)
Dimensionality: 2-D or 3-D
184(1)
Contact Laws: Linear or Non-Linear
185(1)
Particle Shapes: Disks/Spheres or Polygons/Polyhedrons
185(1)
Single Particle Rotation: With or Without
185(1)
Algorithm for Integrating the Equations of Motion
186(1)
Bonded or Not Bonded
186(1)
Interactions Between Particles: Complete or Simplified
187(1)
Criterion for Bond Breakage
187(1)
Frictional Forces
187(1)
Parameter Calibration
188(1)
The Model, Equations and Numerical Algorithms to Integrate These Equations
189(4)
A Brief Introduction to the ESyS_Particle
189(1)
Equations
190(1)
Algorithms to Integrate the Equations of Rotation
191(2)
Contact Laws, Particle Interactions and Calculation of Forces and Torques
193(11)
Bonded Interaction
193(1)
The Bonded Model
193(1)
Calculation of Interactions due to Relative Motion
194(6)
Criterion for Bond Breakage
200(1)
Solely Normal Repulsive Interaction
201(1)
Cohesionless Frictional Interaction
201(3)
Parameter Calibration
204(7)
Elastic Parameters: Spring Stiffness
204(1)
2-D Triangular Lattice
204(1)
3-D Lattices: HCP and FCC
205(4)
Fracture Parameters
209(1)
Other Parameters
210(1)
Time Step
210(1)
Artificial Damping
210(1)
Loading Rate
211(1)
Some Recent Simulation Results
211(8)
2-D Tests
211(1)
Uni-Axial Tests
211(2)
Wing Crack Extension
213(1)
Shearing and Crushing of Aggregates
214(1)
Simulation of Brittle Fracture by Dynamic Impact
215(1)
3-D Tests
216(1)
Uniaxial Test
216(1)
Wing Crack
217(2)
Discussion: Major Differences of the ESyS_Particle Compared with the Other Existing DEMs
219(1)
Conclusions
220(9)
References
222(7)
The TeraShake Computational Platform for Large-Scale Earthquake Simulations
229(50)
Yifeng Cui
Kim Olsen
Amit Chourasia
Reagan Moore
Philip Maechling
Thomas Jordan
Introduction
230(2)
The TeraShake Computational Platform
232(2)
TeraShake Application: Anelastic Wave Model
234(3)
Enhancement and Optimization of the TeraShake Application
237(11)
Porting and Optimizations
237(2)
Optimization of Initialization
239(1)
Optimization of I/O
240(2)
Mapping TS-AWP to Different TeraGrid Architectures
242(1)
Scaling the Code up to 40k Processors
243(2)
Preparing for TeraShake Executions
245(2)
Maintenance and Additional Techniques for the TeraShake Platform
247(1)
Data Archival and Management
248(9)
SCEC Data Grid
249(3)
Wave Propagation Simulation Data Archival
252(1)
SCEC Data Management Challenges
253(2)
Comparison to Grid Technology
255(1)
SCEC Digital Library
256(1)
TeraShake Visualization
257(8)
Visualization Techniques
258(1)
Surface Visualization
258(1)
Topographic Visualization
259(2)
Volumetric Visualization
261(1)
Static Maps
262(1)
Self Contoured Maps
262(1)
Map Service Portal for Surface Data
262(2)
Visualization Tools and Results
264(1)
Visualization Discussion
264(1)
Scientific Results of TeraShake-1 and TeraShake-2
265(3)
Lessons Learned from Enabling Very-Large Scale Earthquake Simulations
268(5)
Summary
273(6)
References
275(4)
Probabilistic Forecast of Tsunami Hazards along Chinese Coast
279(40)
Yingchun Liu
Yaolin Shi
Erik O. D. Sevre
Huilin Xing
David A. Yuen
Introduction
280(3)
Geological and Geophysical Analysis
283(5)
Probabilistic Forecast of Tsunami Hazards
288(8)
Probabilistic Forecast of Tsunami and Seismic Hazards
288(3)
Linear and Non-linear Modeling Potential Tsunami Sources
291(5)
Probabilistic Forecast of Tsunami and Seismic Hazard in China Sea Region
296(14)
Probabilistic Forecast of Seismic Hazard in South China Sea Region
296(1)
Probabilistic Forecast of Seismic Hazard in Eastern China Sea Region
297(1)
Tsunami Numerical Simulation in China Sea Region
298(5)
Probabilistic Forecast of Tsunami Hazard in China Sea Region
303(7)
Discussions and Summary
310(2)
Conclusion
312(7)
References
314(5)
Index 319