Muutke küpsiste eelistusi

Advances in Intelligent Data Analysis XXIII: 23rd International Symposium on Intelligent Data Analysis, IDA 2025, Konstanz, Germany, May 79, 2025, Proceedings [Pehme köide]

Edited by , Edited by , Edited by
  • Formaat: Paperback / softback, 486 pages, kõrgus x laius: 235x155 mm, 111 Illustrations, color; 6 Illustrations, black and white; XVI, 486 p. 117 illus., 111 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 15669
  • Ilmumisaeg: 02-May-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031913973
  • ISBN-13: 9783031913976
  • Pehme köide
  • Hind: 141,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 166,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 486 pages, kõrgus x laius: 235x155 mm, 111 Illustrations, color; 6 Illustrations, black and white; XVI, 486 p. 117 illus., 111 illus. in color., 1 Paperback / softback
  • Sari: Lecture Notes in Computer Science 15669
  • Ilmumisaeg: 02-May-2025
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031913973
  • ISBN-13: 9783031913976
This volume constitutes the proceedings of the 23rd International Symposium on Intelligent Data Analysis, IDA 2025, which was held in Konstanz, Germany, during May 79, 2025.



The 35 full papers included in the proceedings were carefully reviewed and selected from 91 submissions. They were organized in topical sections as follows: Applications of data science, foundations of data science; natural language processing; temporal and streaming data; and explainable and interpretable data science. 
Applications of Data Science.- Credal Knowledge Tracing for Imprecise
and Uncertain MCQ.- Development of Models to Quantify Training Load in
Outdoor Running using Inertial Sensors.- Estimating the Learning Capacity of
Bacterial Metabolic Networks.- Semi-supervised learning with pairwise
instance comparisons for medical instance classification.- Local-global Data
Augmentation for Contrastive Learning in Static Sign Language Recognition.-
SiamCircle: Trajectory Representation Learning in Free Settings.- Synthetic
Tabular Data Detection In the Wild.- Assessing the Impact of Graph Structure
Learning in Graph Deviation Networks.- Foundations of Data Science.- The When
and How of Target Variable Transformations.- Balancing performance and
scalability of demand forecasting ML models.- Balancing global importance and
source proximity for personalized recommendations using random walk length.-
Counterintuitive Behavior of Clustering Quality: Findings for K-Means
on Synthetic and Real Data.- BOWSA: a contribution of sensitivity analysis to
improve Bayesian optimization for parameter tuning.- Overfitting in Combined
Algorithm Selection and Hyperparameter
Optimization.- Local Subgroup Discovery on Attributed Network Graphs.-
Imposing Constraints in Probabilistic Circuits via Gradient Optimization.-
Natural Language Processing.- Improving Next Tokens via Second-Last
Predictions with Generate and Refine.- Detection of Large Language Model
Contamination with Tabular Data.- Imbalanced Data Clustering via Targeted
Data Augmentation Using GMM and LLM.- Make Literature-Based Discovery Great
Again through Reproducible Pipelines.- Extracting information in a
low-resource setting: case study on bioinformatics workflows.- Vocabulary
Quality in NLP Datasets: An Autoencoder-Based Framework Across Domains and
Languages.- Temporal and Streaming Data Expertise Prediction of Tetris
Players Using Eye Tracking Information.- Integrating Inverse and Forward
Modeling for Sparse Temporal Data from Sensor Networks.- Bridging Spatial and
Temporal Contexts: Sparse Transfer Learning.- Meta-learning and Data
Augmentation for Stress Testing Forecasting Models.- Pragmatic Paradigm for
Multi-stream Regression.- Two-in-one Models for Event Prediction and Time
Series Forecasting. Comparison of Four Deep Learning Approaches to Simulate a
Digital Patient under Anesthesia.- An Analysis of Temporal Dropout in Earth
Observation Time Series for Regression Tasks.- Performative Drift Resistant
Classification using Generative Domain Adversarial Networks.- Explainable and
Interpretable Data Science.- Extracting Moore Machines from Transformers
using Queries and Counterexamples.- Obtaining Example-Based Explanations from
Deep Neural Networks.- Relevance-aware Algorithmic Recourse.- Expanding
Polynomial Kernels for Global and Local Explanations of Support Vector
Machines.- A Constrained Declarative Based Approach for Explainable
Clustering.