Muutke küpsiste eelistusi

Advances in Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization: Proceedings of the 13th International Workshop, WSOMplus 2019, Barcelona, Spain, June 26-28, 2019 2020 ed. [Pehme köide]

  • Formaat: Paperback / softback, 342 pages, kõrgus x laius: 235x155 mm, kaal: 545 g, 113 Illustrations, color; 48 Illustrations, black and white; XII, 342 p. 161 illus., 113 illus. in color., 1 Paperback / softback
  • Sari: Advances in Intelligent Systems and Computing 976
  • Ilmumisaeg: 28-Apr-2019
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030196410
  • ISBN-13: 9783030196417
Teised raamatud teemal:
  • Pehme köide
  • Hind: 141,35 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 166,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 342 pages, kõrgus x laius: 235x155 mm, kaal: 545 g, 113 Illustrations, color; 48 Illustrations, black and white; XII, 342 p. 161 illus., 113 illus. in color., 1 Paperback / softback
  • Sari: Advances in Intelligent Systems and Computing 976
  • Ilmumisaeg: 28-Apr-2019
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030196410
  • ISBN-13: 9783030196417
Teised raamatud teemal:

This book gathers papers presented at the 13th International Workshop on Self-Organizing Maps, Learning Vector Quantization, Clustering and Data Visualization (WSOM+), which was held in Barcelona, Spain, from the 26th to the 28th of June 2019. Since being founded in 1997, the conference has showcased the state of the art in unsupervised machine learning methods related to the successful and widely used self-organizing map (SOM) method, and extending its scope to clustering and data visualization. In this installment of the AISC series, the reader will find theoretical research on SOM, LVQ and related methods, as well as numerous applications to problems in fields ranging from business and engineering to the life sciences. Given the scope of its coverage, the book will be of interest to machine learning researchers and practitioners in general and, more specifically, to those looking for the latest developments in unsupervised learning and data visualization.