Muutke küpsiste eelistusi

Advances in Spatio-Temporal Segmentation of Visual Data 2020 ed. [Pehme köide]

Edited by , Edited by , Edited by
  • Formaat: Paperback / softback, 274 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, IX, 274 p., 1 Paperback / softback
  • Sari: Studies in Computational Intelligence 876
  • Ilmumisaeg: 17-Jan-2021
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030354822
  • ISBN-13: 9783030354824
  • Pehme köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 274 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, IX, 274 p., 1 Paperback / softback
  • Sari: Studies in Computational Intelligence 876
  • Ilmumisaeg: 17-Jan-2021
  • Kirjastus: Springer Nature Switzerland AG
  • ISBN-10: 3030354822
  • ISBN-13: 9783030354824
This book proposes a number of promising models and methods for adaptive segmentation, swarm partition, permissible segmentation, and transform properties, as well as techniques for spatio-temporal video segmentation and interpretation, online fuzzy clustering of data streams, and fuzzy systems for information retrieval. The main focus is on the spatio-temporal segmentation of visual information. 

Sets of meaningful and manageable image or video parts, defined by visual interest or attention to higher-level semantic issues, are often vital to the efficient and effective processing and interpretation of viewable information. Developing robust methods for spatial and temporal partition represents a key challenge in computer vision and computational intelligence as a whole.

This book is intended for students and researchers in the fields of machine learning and artificial intelligence, especially those whose work involves image processing and recognition, video parsing, and content-based image/video retrieval. 

Adaptive Edge Detection Models and Algorithms.- Swarm Methods of Image Segmentation.- Spatio-temporal Data Interpretation Based on Perceptional Model.- Spatio-Temporal Video Segmentation.