Muutke küpsiste eelistusi

AeroMACS: An IEEE 802.16 Standard-Based Technology for the Next Generation of Air Transportation Systems [Kõva köide]

  • Formaat: Hardback, 480 pages, kõrgus x laius x paksus: 229x155x28 mm, kaal: 907 g
  • Ilmumisaeg: 07-Dec-2018
  • Kirjastus: Standards Information Network
  • ISBN-10: 1119281105
  • ISBN-13: 9781119281108
  • Formaat: Hardback, 480 pages, kõrgus x laius x paksus: 229x155x28 mm, kaal: 907 g
  • Ilmumisaeg: 07-Dec-2018
  • Kirjastus: Standards Information Network
  • ISBN-10: 1119281105
  • ISBN-13: 9781119281108

This is a pioneering textbook on the comprehensive description of AeroMACS technology. It also presents the process of developing a new technology based on an established standard, in this case IEEE802.16 standards suite.

The text introduces readers to the field of airport surface communications systems and provides them with comprehensive coverage of one the key components of the Next Generation Air Transportation System (NextGen); i.e., AeroMACS. It begins with a critical review of the legacy aeronautical communications system and a discussion of the impetus behind its replacement with network-centric digital technologies. It then describes wireless mobile channel characteristics in general, and focuses on the airport surface channel over the 5GHz band. This is followed by an extensive coverage of major features of IEEE 802.16-2009 Physical Layer (PHY)and Medium Access Control (MAC) Sublayer. The text then provides a comprehensive coverage of the AeroMACS standardization process, from technology selection to network deployment. AeroMACS is then explored as a short-range high-data-throughput broadband wireless communications system, with concentration on the AeroMACS PHY layer and MAC sublayer main features, followed by making a strong case in favor of the IEEE 802.16j Amendment as the foundational standard for AeroMACS networks.

AeroMACS: An IEEE 802.16 Standard-Based Technology for the Next Generation of Air Transportation Systems covers topics such as Orthogonal Frequency Division Multiple Access (OFDMA), coded OFDMA, scalable OFDMA, Adaptive Modulation-Coding (AMC), Multiple-Input Multiple-Output (MIMO) systems, Error Control Coding (ECC) and Automatic Repeat Request (ARQ) techniques, Time Division Duplexing (TDD), Inter-Application Interference (IAI), and so on. It also looks at future trends and developments of AeroMACS networks as they are deployed across the world, focusing on concepts that may be applied to improve the future capacity. In addition, this text: 

  • Discusses the challenges posed by complexities of airport radio channels as well as those pertaining to broadband transmissions
  • Examines physical layer (PHY) and Media Access Control (MAC) sublayer protocols and signal processing techniques of AeroMACS inherited from IEEE 802.16 standard and WiMAX networks
  • Compares AeroMACS and how it relates to IEEE 802.16 Standard-Based WiMAX

AeroMACS: An IEEE 802.16 Standard-Based Technology for the Next Generation of Air Transportation Systems will appeal to engineers and technical professionals involved in the research and development of AeroMACS, technical staffers of government agencies in aviation sectors, and graduate students interested in standard-based wireless networking analysis, design, and development.

Preface xvii
Acronyms xxv
1 Airport Communications from Analog AM to AeroMACS
1(40)
1.1 Introduction
1(1)
1.2 Conventional Aeronautical Communication Domains (Flight Domains)
2(2)
1.3 VHF Spectrum Depletion
4(1)
1.4 The ACAST Project
5(2)
1.5 Early Digital Communication Technologies for Aeronautics
7(7)
1.5.1 ACARS
7(1)
1.5.2 VHF Data Link (VDL) Systems
8(1)
1.5.2.1 Aeronautical Telecommunications Network (ATN)
8(1)
1.5.2.2 VDL Systems
8(2)
1.5.3 Overlay Broadband Alternatives for Data Transmission
10(1)
1.5.3.1 Direct-Sequence Spread Spectrum Overlay
11(1)
1.5.3.2 Broadband VHF (B-VHF)
11(1)
1.5.4 Controller-Pilot Data Link Communications (CPDLC)
12(2)
1.6 Selection of a Communications Technology for Aeronautics
14(1)
1.7 The National Airspace System (NAS)
15(5)
1.7.1 Flight Control
16(1)
1.7.2 United States Civilian Airports
17(3)
1.8 The Next Generation Air Transportation Systems (NextGen)
20(5)
1.8.1 The NextGen Vision
22(1)
1.8.2 NextGen Key Components and Functionalities
22(3)
1.9 Auxiliary Wireless Communications Systems Available for the Airport Surface
25(6)
1.9.1 Public Safety Mobile Radio for Airport Incidents
26(1)
1.9.1.1 Public Safety Communications (PSC) Systems Architecture and Technologies
26(1)
1.9.1.2 Public Safety Allocated Radio Spectrum
27(1)
1.9.1.3 700 MHz Band and the First Responder Network Authority (FirstNet)
28(2)
1.9.2 Wireless Fidelity (WiFi) Systems Applications for Airport Surface
30(1)
1.10 Airport Wired Communications Systems
31(5)
1.10.1 Airport Fiber-Optic Cable Loop System
34(1)
1.10.2 Applications of CLCS in Airport Surface Communications and Navigation
35(1)
1.11 Summary
36(5)
References
36(5)
2 Cellular Networking and Mobile Radio Channel Characterization
41
2.1 Introduction
41(1)
2.2 The Crux of the Cellular Concept
42(27)
2.2.1 The "Precellular" Wireless Mobile Communications Systems
43(2)
2.2.2 The Core of the Cellular Notion
45(3)
2.2.3 Frequency Reuse and Radio Channel Multiplicity
48(1)
2.2.3.1 Co-Channel Reuse Ratio (CCRR), Cluster Size, and Reuse Factor
49(1)
2.2.3.2 Signal to Co-Channel Interference Ratio (SIR)
50(5)
2.2.3.3 Channel Allocation
55(2)
2.2.4 Erlang Traffic Theory and Cellular Network Design
57(1)
2.2.4.1 Trunking, Erlang, and Traffic
58(2)
2.2.4.2 The Grade of Service
60(1)
2.2.4.3 Blocked Calls Handling Strategies
60(2)
2.2.4.4 Trunking Efficiency
62(2)
2.2.4.5 Capacity Enhancement through Cell Splitting
64(3)
2.2.4.6 Capacity Enhancement via Sectorization
67(2)
2.3 Cellular Radio Channel Characterization
69(48)
2.3.1 Cellular Link Impairments
69(2)
2.3.2 Path Loss Computation and Estimation
71(2)
2.3.2.1 Free-Space Propagation and Friis Formula
73(1)
2.3.2.2 The Key Mechanisms Affecting Radio Wave Propagation
74(2)
2.3.2.3 The Ray Tracing Technique
76(1)
2.3.2.4 Ground Reflection and Double-Ray Model
76(5)
2.3.2.5 Empirical Techniques for Path Loss (Large-Scale Attenuation) Estimation
81(1)
2.3.2.6 Okumura-Hata Model for Outdoor Median Path Loss Estimation
82(2)
2.3.2.7 COST 231-Hata Model
84(1)
2.3.2.8 Stanford University Interim (SUI) Model: Erceg Model
85(1)
2.3.2.9 ECC-33 Model
86(1)
2.3.3 Large-Scale Fading: Shadowing and Foliage
87(1)
2.3.3.1 Log-Normal Shadowing
88(3)
2.3.3.2 Estimation of Useful Coverage Area (UCA) within a Cell Footprint
91(3)
2.3.4 Small-Scale Fading: Multipath Propagation and Doppler Effect
94(1)
2.3.4.1 Multipath Propagation
95(2)
2.3.4.2 Double Path Example
97(2)
2.3.4.3 Doppler Shift
99(1)
2.3.4.4 Impulse Response of Multipath Channels
100(2)
2.3.4.5 Delay Spread and Fading Modes
102(1)
2.3.4.6 Methods of Combating Frequency-Selective Fading
103(2)
2.3.4.7 Coherence Bandwidth and Power Delay Profiles (PDPs)
105(3)
2.3.4.8 Frequency Flat Fading versus Frequency-Selective Fading
108(1)
2.3.4.9 Frequency Dispersion and Coherence Time
109(1)
2.3.4.10 Classification of Multipath Fading Channels
110(2)
2.3.4.11 Probabilistic Models for Frequency Flat Fading Channels
112(1)
2.3.4.12 Rayleigh Fading Channels
112(3)
2.3.4.13 Rician Fading Channels
115(2)
2.4 Challenges of Broadband Transmission over the Airport Surface Channel
117(1)
2.5 Summary
118(5)
References
119(4)
3 Wireless Channel Characterization for the 5 GHz Band Airport Surface Area
123(28)
3.1 Introduction
123(6)
3.1.1 Importance of Channel Characterization
123(2)
3.1.2 Channel Definitions
125(2)
3.1.3 Airport Surface Area Channel
127(2)
3.2 Statistical Channel Characterization Overview
129(5)
3.2.1 The Channel Impulse Response and Transfer Function
129(1)
3.2.2 Statistical Channel Characteristics
130(3)
3.2.3 Common Channel Parameters and Statistics
133(1)
3.3 Channel Effects and Signaling
134(3)
3.3.1 Small-Scale and Large-Scale Fading
134(1)
3.3.2 Channel Parameters and Signaling Relations
135(2)
3.4 Measured Airport Surface Area Channels
137(6)
3.4.1 Measurement Description and Example Results
137(4)
3.4.2 Path Loss Results
141(2)
3.5 Airport Surface Area Channel Models
143(1)
3.5.1 Large/Medium-Sized Airports
144(1)
3.5.2 Small Airports
144(1)
3.6 Summary
144(7)
References
147(4)
4 Orthogonal Frequency-Division Multiplexing and Multiple Access
151(38)
4.1 Introduction
151(1)
4.2 Fundamental Principles of OFDM Signaling
152(9)
4.2.1 Parallel Transmission, Orthogonal Multiplexing, Guard Time, and Cyclic Extension
154(1)
4.2.1.1 Cyclic Prefix and Guard Time
155(1)
4.2.2 Fourier Transform-Based OFDM Signal
156(1)
4.2.3 Windowing, Filtering, and Formation of OFDM Signal
157(2)
4.2.4 OFDM System Implementation
159(1)
4.2.5 Choice of Modulation Schemes for OFDM
160(1)
4.2.6 OFDM Systems Design: How the Key Parameters are Selected
161(1)
4.3 Coded Orthogonal Frequency-Division Multiplexing: COFDM
161(6)
4.3.1 Motivation
162(1)
4.3.2 System-Level Functional Block Diagram of a Fourier-Based COFDM
162(2)
4.3.3 Some Classical Applications of COFDM
164(1)
4.3.3.1 COFDM Applied in Digital Audio Broadcasting (DAB)
164(1)
4.3.3.2 COFDM Applied in Wireless LAN (Wi-Fi): The IEEE 802.11 Standard
165(2)
4.4 Performance of Channel Coding in OFDM Networks
167(2)
4.5 Orthogonal Frequency-Division Multiple Access: OFDMA
169(10)
4.5.1 Multiple Access Technologies: FDMA, TDMA, CDMA, and OFDMA
171(4)
4.5.2 Incentives behind Widespread Applications of OFDMA in Wireless Networks
175(1)
4.5.3 Subchannelization and Symbol Structure
176(2)
4.5.4 Permutation Modes for Configuration of Subchannels
178(1)
4.5.4.1 The Peak-to-Average Power Ratio Problem
179(1)
4.6 Scalable OFDMA (SOFDMA)
179(4)
4.6.1 How to Select the OFDMA Basic Parameters vis-a-vis Scalability
180(2)
4.6.2 Options in Scaling
182(1)
4.7 Summary
183(6)
References
184(5)
5 The IEEE 802.16 Standards and the WiMAX Technology
189(70)
5.1 Introduction to the IEEE 802.16 Standards for Wireless MAN Networks
190(3)
5.2 The Evolution and Characterization of IEEE 802.16 Standards
193(7)
5.2.1 IEEE 802.16-2004 Standard
193(1)
5.2.2 IEEE 802.16e-2005 Standard
194(1)
5.2.3 IEEE 802.16-2009 Standard
194(1)
5.2.4 IEEE 802.16j Amendment
194(1)
5.2.5 The Structure of a WirelessMAN Cell
195(2)
5.2.6 Protocol Reference Model (PRM) for the IEEE 802.16-2009 Standard
197(3)
5.3 WiMAX: an IEEE 802.16-Based Technology
200(54)
5.3.1 Basic Features of WiMAX Systems
200(4)
5.3.2 WiMAX Physical Layer Characterization
204(1)
5.3.2.1 OFDMA and SOFDMA for WiMAX
205(1)
5.3.2.2 Comparison of Duplexing Technologies: TDD versus FDD
206(1)
5.3.2.3 Subchannelization for Mobile WiMAX
207(4)
5.3.2.4 WiMAX TDD Frame Structure
211(4)
5.3.2.5 Adaptive (Advanced) Modulation and Coding (AMC)
215(4)
5.3.2.6 ARQ and Hybrid ARQ: Multilayer Error Control Schemes
219(1)
5.3.2.7 Multiple Antenna Techniques, MIMO, and Space-Time Coding
219(8)
5.3.2.8 Fractional Frequency Reuse Techniques for Combating Intercell Interference and to Boost Spectral Efficiency
227(3)
5.3.2.9 Power Control and Saving Modes in WiMAX Networks
230(1)
5.3.3 WiMAX MAC Layer Description
231(1)
5.3.3.1 WiMAX MAC CS; Connections and Service Flows
232(1)
5.3.3.2 The MAC CPS Functionalities
232(1)
5.3.3.3 WiMAX Security Sublayer
233(1)
5.3.3.4 WiMAX MAC Frame and MAC Header Format
234(1)
5.3.3.5 Quality of Service (QoS), Scheduling, and Bandwidth Allocation
235(4)
5.3.4 WiMAX Forum and WiMAX Profiles
239(1)
5.3.4.1 WiMAX System Profiles and Certification Profiles
240(1)
5.3.4.2 WiMAX Mobile System Profiles
241(4)
5.3.5 WiMAX Network Architecture
245(1)
5.3.5.1 WiMAX Network Reference Model as Presented by WiMAX Forum
246(2)
5.3.5.2 Characterization of Major Logical and Physical Components of WiMAX NRM
248(2)
5.3.5.3 Visual Depiction of WiMAX NRM
250(1)
5.3.5.4 The Description of WiMAX Reference Points
250(1)
5.3.6 Mobility and Handover in WiMAX Networks
250(3)
5.3.7 Multicast and Broadcast with WiMAX
253(1)
5.4 Summary
254(5)
References
255(4)
6 Introduction to AeroMACS
259(46)
6.1 The Origins of the AeroMACS Concept
259(3)
6.1.1 WiMAX Salient Features and the Genealogy of AeroMACS
260(2)
6.2 Defining Documents in the Making of AeroMACS Technology
262(5)
6.3 AeroMACS Standardization
267(20)
6.3.1 AeroMACS Standards and Recommended Practices (SARPS)
268(2)
6.3.2 Harmonization Document
270(1)
6.3.3 Overview of Most Recent AeroMACS Profile
271(2)
6.3.3.1 The AeroMACS Profile Background and Concept of Operations
273(2)
6.3.3.2 AeroMACS Profile Technical Aspects
275(1)
6.3.3.3 Profile's Key Assumptions for AeroMACS System Design
275(1)
6.3.3.4 AeroMACS Radio Profile Requirements and Restrictions
276(1)
6.3.3.5 AeroMACS Profile Common Part and TDD Format
277(2)
6.3.4 AeroMACS Minimum Operational Performance Standards (MOPS)
279(1)
6.3.4.1 AeroMACS Capabilities and Operational Applications
280(1)
6.3.4.2 MOPS Equipment Test Procedures
281(1)
6.3.4.3 Minimum Performance Standard
281(2)
6.3.5 AeroMACS Minimum Aviation System Performance Standards (MASPS)
283(2)
6.3.6 AeroMACS Technical Manual
285(2)
6.4 AeroMACS Services and Applications
287(8)
6.5 AeroMACS Prototype Network and Testbed
295(6)
6.5.1 Testbed Configuration
296(1)
6.5.2 Early Testing Procedures and Results
297(1)
6.5.2.1 Mobile Application Testing with ARV
298(1)
6.5.2.2 The Results of AeroMACS Mobile Tests with Boeing 737-700
299(1)
6.5.2.3 AeroMACS Performance Validation
300(1)
6.6 Summary
301(4)
References
302(3)
7 AeroMACS Networks Characterization
305(56)
7.1 Introduction
305(1)
7.2 AeroMACS Physical Layer Specifications
306(23)
7.2.1 OFDM and OFDMA for AeroMACS
309(1)
7.2.2 AeroMACS OFDMA TDD Frame Configuration
309(3)
7.2.3 AeroMACS Modulation Formats
312(1)
7.2.3.1 How to Select a Modulation Technique for a Specific Application
313(2)
7.2.3.2 General Characteristics of Modulation Schemes Supported by AeroMACS
315(3)
7.2.4 AeroMACS Channel Coding Schemes
318(1)
7.2.4.1 Mandatory Channel Coding for AeroMACS
318(2)
7.2.4.2 Optional CC-RS Code Concatenated Scheme
320(1)
7.2.4.3 Convolutional Turbo Coding (CTC) Technique
321(2)
7.2.5 Adaptive Modulation and Coding (AMC) for AeroMACS Link Adaptation
323(2)
7.2.6 AeroMACS Frame Structure
325(1)
7.2.7 Computation of AeroMACS Receiver Sensitivity
326(1)
7.2.8 Fractional Frequency Reuse for WiMAX and AeroMACS Networks
327(1)
7.2.9 Multiple-Input Multiple-Output (MIMO) Configurations for AeroMACS
328(1)
7.3 Spectrum Considerations
329(3)
7.4 Spectrum Sharing and Interference Compatibility Constraints
332(2)
7.5 AeroMACS Media Access Control (MAC) Sublayer
334(13)
7.5.1 Quality of Service for AeroMACS Networks
336(2)
7.5.2 Scheduling, Resource Allocation, and Data Delivery
338(3)
7.5.3 Automatic Repeat Request (ARQ) Protocols
341(3)
7.5.4 Handover (HO) Procedures in AeroMACS Networks
344(1)
7.5.4.1 MS-Initiated Handover Process
345(2)
7.6 AeroMACS Network Architecture and Reference Model
347(6)
7.6.1 AeroMACS Network Architecture
347(2)
7.6.2 AeroMACS Network Reference Model (NRM)
349(4)
7.7 Aeronautical Telecommunications Network Revisited
353(2)
7.8 AeroMACS and the Airport Network
355(1)
7.9 Summary
356(5)
References
358(3)
8 AeroMACS Networks Fortified with Multihop Relays
361(58)
8.1 Introduction
361(1)
8.2 IEEE 802.16j Amendment Revisited
362(3)
8.3 Relays: Definitions, Classification, and Modes of Operation
365(20)
8.3.1 A Double-Hop Relay Configuration: Terminologies and Definitions
366(2)
8.3.2 Relay Modes: Transparent versus Non-Transparent
368(3)
8.3.3 Time Division Transmit and Receive Relays (TTR) and Simultaneous Transmit and Receive Relays (STR)
371(1)
8.3.4 Further Division of Relay Modes of Operation
372(1)
8.3.5 Relays Classification Based on MAC Layer Functionalities: Centralized and Distributed Modes
373(1)
8.3.6 Physical Classification of IEEE 802.16j Relays: Relay Types
374(1)
8.3.6.1 Relay Type and Latency
375(1)
8.3.7 Modes of Deployment of IEEE 802.16j Relays in Wireless Networks
376(1)
8.3.8 Frame Structure for Double-Hop IEEE 802.16j TDD TRS
377(3)
8.3.8.1 The Detail of IEEE 802-16j Operation with Transparent Relays
380(1)
8.3.9 The Frame Structure for TTR-NTRS
381(1)
8.3.10 The Frame Structure for STR-NTRS
382(2)
8.3.10.1 STR Implementation in Different Layers
384(1)
8.4 Regarding MAC Layers of IEEE 802.16j and NRTS
385(7)
8.4.1 Data Forwarding Schemes
385(1)
8.4.1.1 Routing Selection and Path Management
386(1)
8.4.1.2 Initial Ranging and Network Entry
387(1)
8.4.2 Scheduling
388(2)
8.4.3 Security Schemes
390(1)
8.4.4 Quality of Service (QoS) in Relay-Augmented Networks
390(1)
8.4.4.1 The Impact of Scheduling and Relay Mode on AeroMACS Network Parameters
391(1)
8.5 Challenges and Practical Issues in IEEE 802.16j-Based AeroMACS
392(2)
8.5.1 Latency
392(1)
8.5.2 The Number of Hops
392(1)
8.5.3 The Output Power and Antenna Selection
393(1)
8.6 Applications and Usage Scenarios for Relay-Augmented Broadband Cellular Networks
394(7)
8.6.1 Some Applications of Relay-Fortified Systems
395(1)
8.6.1.1 The European REWIND Project
395(1)
8.6.1.2 Vehicular Networks
396(1)
8.6.1.3 4G and 5G Cellular Networks
396(1)
8.6.1.4 Cognitive Femtocell
397(1)
8.6.2 Potential Usage Scenarios of IEEE 802.16j
397(1)
8.6.2.1 Radio Outreach Extension
397(2)
8.6.2.2 The Concept of "Filling a Coverage Hole"
399(1)
8.6.2.3 Relays for Capacity and Throughput Improvement
399(1)
8.6.2.4 The Case of Cooperative Relaying
399(1)
8.6.2.5 Reliable Coverage for In-Building and In-Door Scenarios
400(1)
8.6.2.6 The Mobile Relays
401(1)
8.6.2.7 The Temporary Relay Stations
401(1)
8.7 IEEE 802.16j-Based Relays for AeroMACS Networks
401(2)
8.7.1 Airport Surface Radio Coverage Situations for which IEEE 802.16j Offers a Preferred Alternative
402(1)
8.8 Radio Resource Management (RRM) for Relay-Fortified Wireless Networks
403(2)
8.9 The Multihop Gain
405(2)
8.9.1 Computation of Multihop Gain for the Simplest Case
405(2)
8.10 Interapplication Interference (IAI) in Relay-Fortified AeroMACS
407(4)
8.11 Making the Case for IEEE 802.16j-Based AeroMACS
411(3)
8.11.1 The Main Arguments
411(1)
8.11.1.1 Supporting and Drawback Instants
412(1)
8.11.2 The Second Argument
412(1)
8.11.3 How to Select a Relay Configuration
413(1)
8.11.4 A Note on Cell Footprint Extension
413(1)
8.12 Summary
414(5)
References
415(4)
Index 419
BEHNAM KAMALI, Ph.D., is Sam Nunn Eminent Scholar of Telecommunications and a Professor of Electrical and Computer Engineering at Mercer University, USA. Dr. Kamali has over 40 years of industry and academic experience in analysis, design, and implementation of digital communications systems, wireless networks, and digital storage devices. He is a Senior Member of the IEEE.Dr. Kamali has published over 100 journal and magazine papers, conference articles, and research reports, several of them on AeroMACS and WiMAX technologies. He has taught at, or worked for, 10 major universities across the globe. Dr. Kamali is a seven-time NASA visiting Summer Research Fellow at Glenn Research Center and Jet Propulsion Laboratory.