Muutke küpsiste eelistusi

Aeroservoelasticity: Modeling and Control 2015 ed. [Kõva köide]

  • Formaat: Hardback, 318 pages, kõrgus x laius: 235x155 mm, kaal: 799 g, 1 Illustrations, color; 134 Illustrations, black and white; XI, 318 p. 135 illus., 1 illus. in color., 1 Hardback
  • Sari: Control Engineering
  • Ilmumisaeg: 25-Mar-2015
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1493923676
  • ISBN-13: 9781493923670
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 318 pages, kõrgus x laius: 235x155 mm, kaal: 799 g, 1 Illustrations, color; 134 Illustrations, black and white; XI, 318 p. 135 illus., 1 illus. in color., 1 Hardback
  • Sari: Control Engineering
  • Ilmumisaeg: 25-Mar-2015
  • Kirjastus: Springer-Verlag New York Inc.
  • ISBN-10: 1493923676
  • ISBN-13: 9781493923670

This monograph presents the state of the art in aeroservoelastic (ASE) modeling and analysis and develops a systematic theoretical and computational framework for use by researchers and practicing engineers. It is the first book to focus on the mathematical modeling of structural dynamics, unsteady aerodynamics, and control systems to evolve a generic procedure to be applied for ASE synthesis. Existing robust, nonlinear, and adaptive control methodology is applied and extended to some interesting ASE problems, such as transonic flutter and buffet, post-stall buffet and maneuvers, and flapping flexible wing.

The author derives a general aeroservoelastic plant via the finite-element structural dynamic model, unsteady aerodynamic models for various regimes in the frequency domain, and the associated state-space model by rational function approximations. For more advanced models, the full-potential, Euler, and Navier-Stokes methods for treating transonic and separated flows are also briefly addressed. Essential ASE controller design and analysis techniques are introduced to the reader, and an introduction to robust control-law design methods of LQG/LTR and H2/H8 synthesis is followed by a brief coverage of nonlinear control techniques of describing functions and Lyapunov functions. Practical and realistic aeroservoelastic application examples derived from actual experiments are included throughout.

Aeroservoelasiticity fills an important gap in the aerospace engineering literature and will be a valuable guide for graduate students and advanced researchers in aerospace engineering, as well as professional engineers, technicians, and test pilots in the aircraft industry and laboratories.

1 Aeroservoelasticity
1(12)
1.1 Introduction
1(6)
1.2 An Illustrative Example
7(6)
2 Structural Modeling
13(46)
2.1 Introduction
13(1)
2.2 Static Load Deflection Model
14(4)
2.3 Beam-Shaft Idealization
18(4)
2.4 Dynamics
22(5)
2.5 Lumped Parameters Method
27(4)
2.6 Rayleigh-Ritz Method
31(2)
2.7 Finite-Element Method
33(26)
2.7.1 Weak Formulation and Galerkin's Approximation
33(5)
2.7.2 Euler-Bernoulli Beam and Shaft Elements
38(9)
2.7.3 Illustrative Example
47(4)
2.7.4 Plate Bending Elements
51(8)
3 Unsteady Aerodynamic Modeling
59(96)
3.1 Introduction
59(2)
3.2 Governing Equations
61(10)
3.2.1 Viscous Flow
61(3)
3.2.2 Inviscid Flow
64(1)
3.2.3 Potential Flow
65(4)
3.2.4 Transonic Small-Disturbance Flow
69(2)
3.3 Linearized Subsonic and Supersonic Flow
71(3)
3.4 Incompressible Flow Solution
74(28)
3.4.1 Unsteady Vortex-Lattice Method
80(11)
3.4.2 Classical Analytical Solution
91(11)
3.5 Integral Equation for Linear Compressible Flow
102(14)
3.5.1 Velocity Potential Formulation by Green's Theorem
102(10)
3.5.2 Acceleration Potential Formulation
112(4)
3.6 Subsonic Kernel Function and the Doublet-Lattice Method
116(20)
3.6.1 Numerical Results
128(8)
3.7 Supersonic Lifting Surface Methods
136(8)
3.7.1 Mach-Box Method
139(2)
3.7.2 Doublet-Point Method
141(3)
3.8 Transonic Small-Disturbance Solution by Green's Function Method
144(11)
3.8.1 Transonic Green's Integral Equation
144(5)
3.8.2 Transonic Doublet-Lattice Method
149(6)
4 Finite-State Aeroelastic Modeling
155(52)
4.1 Finite-State Unsteady Aerodynamics Model
155(5)
4.1.1 Traditional Flutter Analysis
156(1)
4.1.2 Unsteady Aerodynamics in Time Domain
157(3)
4.2 Transient Aerodynamics in Two-Dimensions
160(23)
4.2.1 Rational Function Approximation
161(5)
4.2.2 Indicial Admittance by Duhamel's Integral
166(1)
4.2.3 Transient Aerodynamics in Three-Dimensions
167(12)
4.2.4 Alternative Methods for 3D Transient Aerodynamics
179(3)
4.2.5 Direct Integration of Governing Equations
182(1)
4.3 State-Space Representation
183(24)
4.3.1 Typical Section Model
185(5)
4.3.2 Three-Dimensional Wing Model
190(5)
4.3.3 Illustrative Example
195(12)
5 Linear Aeroelastic Control
207(50)
5.1 Introduction
207(1)
5.2 Linear Feedback Stabilization
208(6)
5.2.1 Servo-Actuators
210(4)
5.3 Optimal Control
214(5)
5.3.1 Hamilton-Jacobi-Bellman Equation
215(1)
5.3.2 Linear Systems with Quadratic Performance Index
216(3)
5.4 Kalman Filter
219(4)
5.5 Infinite-Horizon Linear Optimal Control
223(2)
5.6 Adverse Aereoservoelastic Interaction
225(14)
5.6.1 Closed-Loop Stabilization of the ASE System
233(2)
5.6.2 Active Maneuver Load Alleviation
235(4)
5.7 Robust Control of Linear Time-Invariant Systems
239(11)
5.7.1 LQG/LTR Method
243(3)
5.7.2 H2/H∞ Control
246(4)
5.8 Active Flutter Suppression
250(7)
6 Nonlinear Aeroservoelastic Applications
257(22)
6.1 Nonlinear Aeroservoelasticity
257(1)
6.2 Describing Functions for Nonlinear ASE
257(3)
6.3 Flapping-Wing Flight
260(11)
6.3.1 Lift and Thrust for Flapping Flight
263(8)
6.4 Shock-Induced Buffet
271(1)
6.5 Transonic Flutter
272(7)
6.5.1 Adaptive Suppression of Transonic LCO: Illustrative Example
273(6)
Appendix A 279(6)
Appendix-B 285(4)
Appendix-C 289(12)
Appendix-D 301(2)
References 303(8)
Index 311