Muutke küpsiste eelistusi

Agents and Data Mining Interaction: 6th International Workshop on Agents and Data Mining Interaction, ADMI 2010, Toronto, ON, Canada, May 11, 2010, Revised Selected Papers [Pehme köide]

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat: Paperback / softback, 192 pages, kaal: 317 g, 63 Illustrations, black and white; X, 192 p. 63 illus., 1 Paperback / softback
  • Sari: Lecture Notes in Artificial Intelligence 5980
  • Ilmumisaeg: 01-Sep-2010
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642154190
  • ISBN-13: 9783642154195
Teised raamatud teemal:
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 192 pages, kaal: 317 g, 63 Illustrations, black and white; X, 192 p. 63 illus., 1 Paperback / softback
  • Sari: Lecture Notes in Artificial Intelligence 5980
  • Ilmumisaeg: 01-Sep-2010
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642154190
  • ISBN-13: 9783642154195
Teised raamatud teemal:
Currently a plethora of heterogeneous, standalone or web-enabled applications exist providing various functionalities that could be exploited in innumerable contexts for the developmentof personalized agent-basedsolutions for the end user. The integration of these applications in a standard and seamless way to enable content-rich services for the end-user is not generally feasible. The main reason for this is that these app- cations are by nature heterogeneous, developed for different development plat-forms, using different software developmenttechnologies. In this paper we present a reference architecture and support tools designed to address the problem of seamless integration ofheterogeneoussoftwareapplicationsthroughdata mining(DM) onweb service(WS) data ("web service mining") in order to enhance personalization, pervasiveness and - ?ciency on behalf of agent-based end-user applications. 1 Work presented in this paper is part of a European funded project called OASIS , whose main objective is the implementation of an ontology-driven, open reference - chitecture, which will enable and facilitate interoperability, seamless connectivity and sharing of content between different services and ontologiesin application domains for the elderly and beyond. OASIS promotes new ways to integrate all supported appli- tions into a common environment that enables access to information and content from the existing applications through WS-based software interfaces and content delivery to end-user in a pervasive manner through multi-agent applications. The achievement of this objectiveforms the main motivationof our work that results in a WS mining fra- work for the delivery of personalizedservices to the elderly users througha multi-agent system (MAS).
Part I Agents for Data Mining
Finding Useful Items and Links in Social and Agent Networks
3(1)
Sandip Sen
Integrating Workflow into Agent-Based Distributed Data Mining Systems
4(12)
Chayapol Moemeng
Xinhua Zhu
Longbing Cao
Pilot Study: Agent-Based Exploration of Complex Data in a Hospital Environment
16(11)
Ted Carmichael
Mirsad Hadzikadic
Ognjen Gajic
Multi-agent Information Retrieval in Heterogenenous Industrial Automation Environments
27(16)
Stephan Pech
Peter Goehner
Part II Data Mining for Agents
A Data Mining Approach to Identify Obligation Norms in Agent Societies
43(16)
Bastin Tony Roy Savarimuthu
Stephen Cranefield
Maryam Purvis
Martin Purvis
Probabilistic Modeling of Mobile Agents' Trajectories
59(12)
Stepan Urban
Michal Jakob
Michal Pechoucek
Real-Time Sensory Pattern Mining for Autonomous Agents
71(16)
Pedro Sequeira
Claudia Antunes
Part III Data Mining in Agents
Analyzing Agent-Based Simulations of Inter-organizational Networks
87(16)
Dominik Schmitz
Thomas Arzdorf
Matthias Jarke
Gerhard Lakemeyer
Clustering in a Multi-Agent Data Mining Environment
103(12)
Santhana Chaimontree
Katie Atkinson
Frans Coenen
Time-Based Reward Shaping in Real-Time Strategy Games
115(11)
Martin Midtgaard
Lars Vinther
Jeppe R. Christiansen
Allan M. Christensen
Yifeng Zeng
Wise Search Engine Based on LSI
126(11)
Yang Jianxiong
Junzo Watada
Pattern Recognition in Online Environment by Data Mining Approach
137(12)
MohammadReza EffatParvar
Mehdi EffatParvar
Maseud Rahgozar
Part IV Agent Mining Applications
A Multiple System Performance Monitoring Model for Web Services
149(13)
Yong Yang
Dan Luo
Chengqi Zhang
Implementing an Open Reference Architecture Based on Web Service Mining for the Integration of Distributed Applications and Multi-Agent Systems
162(16)
Dionisis D. Kehagias
Dimitrios Tzovaras
Efthimia Mavridou
Kostantinos Kalogirou
Martin Becker
Minority Game Data Mining for Stock Market Predictions
178(13)
Ying Ma
Guanyi Li
Yingsai Dong
Zengchang Qin
Author Index 191