Muutke küpsiste eelistusi

Aircraft Performance: An Engineering Approach [Kõva köide]

(Southern New Hampshire University, Manchester, NH)
  • Formaat: Hardback, 546 pages, kõrgus x laius: 280x210 mm, kaal: 1642 g, 59 Tables, black and white; 40 Illustrations, color; 140 Illustrations, black and white
  • Ilmumisaeg: 06-Apr-2017
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1498776558
  • ISBN-13: 9781498776554
Teised raamatud teemal:
  • Kõva köide
  • Hind: 130,20 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 184,80 €
  • Säästad 30%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 546 pages, kõrgus x laius: 280x210 mm, kaal: 1642 g, 59 Tables, black and white; 40 Illustrations, color; 140 Illustrations, black and white
  • Ilmumisaeg: 06-Apr-2017
  • Kirjastus: CRC Press Inc
  • ISBN-10: 1498776558
  • ISBN-13: 9781498776554
Teised raamatud teemal:

Aircraft Performance: An Engineering Approach introduces flight performance analysis techniques that enable readers to determine performance and flight capabilities of aircraft. Flight performance analysis for prop-driven and jet aircraft is explored, supported by examples and illustrations, many in full color. MATLAB programming for performance analysis is included, and coverage of modern aircraft types is emphasized. The text builds a strong foundation for advanced coursework in aircraft design and performance analysis.

Arvustused

"The major strength of this proposed book is (providing) more examples as well as exercise problems to enhance learning..real aircraft data has been used to get to know about real time performance problems." N. Murugan, Vel Tech Institute of Science and Technology, India

"Starts off from the basics and gradually builds up the conceptsA definite must have for anyone who is having a genuine interest to graduating students to practicing engineers...lot of numerical examples and simulation problems using MATLB/SIMULINK are added features of the book...can be used for self-study too." Rajesh Joseph Abraham, Indian Institute of Space Science & Technology, India

"Nice took-off from the very basics and a wonderful flight through the hardest path of performance characteristics at various phases and landed with a modern approach in solving the performance problems smoothly. The author used both the system of units to meet the professional engineer demands. Modern tool is used wherever complex mathematical solution is required." N. Murugan, Veltech Dr. RR & Dr. SR University, India

"My first impression was that it is a large book, probably bigger than most textbooks students already have on their bookshelves. However, the content of the book is really good and follows a clear and logical approach to aircraft performance.

The breadth of the book would also provide an excellent foundation for Masters level Aeronautics students from other engineering disciplines wanting to get up to speed with aircraft performance and aeronautics specific content more generally. The appendices include performance data on a range of aircraft, and most interestingly an appendix on Flight Records, which includes some fascinating data. The book is certainly comprehensive, with extensive examples, problems at the end of each chapter and MATLAB code." The Aeronautical Journal, May 2018 Issue

Preface xv
Author xix
List of symbols xxi
1 Atmosphere 1(32)
1.1 Introduction
1(1)
1.2 General description of atmosphere
2(1)
1.3 Major components
2(2)
1.3.1 Oxygen and nitrogen
2(1)
1.3.2 Carbon dioxide
3(1)
1.3.3 Water vapor
4(1)
1.3.4 Aerosols
4(1)
1.3.5 Ozone
4(1)
1.4 Atmospheric layers
4(3)
1.4.1 Troposphere
5(1)
1.4.2 Stratosphere
6(1)
1.4.3 Mesosphere
6(1)
1.4.4 Thermosphere
6(1)
1.4.5 Ionosphere
7(1)
1.5 International standard atmosphere
7(3)
1.6 Atmospheric parameters
10(8)
1.6.1 Temperature
10(2)
1.6.2 Pressure
12(4)
1.6.2.1 First layer
13(1)
1.6.2.2 Second layer
14(2)
1.6.3 Air density
16(1)
1.6.4 Viscosity
17(1)
1.7 Humidity
18(2)
1.8 Altitude and its measurement
20(4)
1.8.1 Pressure altimeter
23(1)
1.8.2 Radar altimeter
23(1)
1.8.3 Global positioning system
24(1)
1.9 Speed of sound
24(3)
1.10 Atmospheric phenomena
27(2)
1.10.1 Wind
27(1)
1.10.2 Gust and turbulence
28(1)
1.10.3 Icing
29(1)
Problems
29(1)
References
30(3)
2 Equations of motion 33(30)
2.1 Introduction
33(2)
2.2 Aerodynamic forces
35(4)
2.3 General governing equations of motion
39(4)
2.3.1 Coordinate system
40(1)
2.3.2 Unaccelerated versus accelerated flight
40(1)
2.3.3 Flight phases
41(1)
2.3.4 Steady-state flight versus perturbed-state flight
42(1)
2.4 Application of Newton's second law to flight phases
43(7)
2.4.1 Straight-line flight
44(2)
2.4.2 Climbing flight
46(2)
2.4.3 Takeoff
48(1)
2.4.4 Turn
49(1)
2.5 True and equivalent airspeeds
50(5)
2.5.1 Airspeed measurement
50(2)
2.5.2 Airspeed indicator
52(1)
2.5.3 Airspeed indicator corrections
52(1)
2.5.4 Airspeed and ground speed
53(1)
2.5.5 The unit of airspeed
54(1)
2.6 Stall speed
55(4)
Problems
59(3)
References
62(1)
3 Drag force and drag coefficient 63(46)
3.1 Introduction
63(1)
3.2 Drag classification
64(3)
3.3 Drag polar
67(4)
3.4 Calculation of CD
71(20)
3.4.1 Fuselage
72(2)
3.4.2 Wing, horizontal tail, and vertical tail
74(2)
3.4.3 High-lift devices
76(2)
3.4.3.1 Trailing edge high-lift devices
76(1)
3.4.3.2 Leading edge high-lift devices
77(1)
3.4.4 Landing gear
78(1)
3.4.5 Strut
78(1)
3.4.6 Nacelle
79(1)
3.4.7 External fuel tank
79(1)
3.4.8 Cooling drag
80(1)
3.4.9 Trim drag
81(1)
3.4.10 CD of other parts and components
82(8)
3.4.10.1 Interference
82(1)
3.4.10.2 Antenna
82(1)
3.4.10.3 Pitot tube
83(1)
3.4.10.4 Surface roughness
83(1)
3.4.10.5 Leakage
83(1)
3.4.10.6 Rivet and screw
83(1)
3.4.10.7 Pylon
83(1)
3.4.10.8 Fairing for the flap mechanism
84(1)
3.4.10.9 Compressibility
84(4)
3.4.10.10 Icing
88(1)
3.4.10.11 Refueling boom, receptacle, hose, probe, and drogue
88(2)
3.4.10.12 External store
90(1)
3.4.10.13 External sensors
90(1)
3.4.10.14 Miscellaneous items
90(1)
3.4.11 Overall CD
90(1)
3.5 Wave drag
91(8)
3.5.1 Wave drag for wing and tail
92(6)
3.5.2 Aircraft wave drag
98(1)
3.6 CD° for various configurations
99(4)
3.6.1 Clean configuration
100(1)
3.6.2 Takeoff Configuration
100(1)
3.6.3 Landing configuration
100(1)
3.6.4 The effect of speed and altitude on CD°
101(2)
Problems
103(5)
References
108(1)
4 Engine performance 109(68)
4.1 Introduction
109(1)
4.2 Aircraft engine classification
110(1)
4.3 Piston or reciprocating engine
111(8)
4.3.1 Piston engine configurations
112(1)
4.3.2 Piston engine performance
113(4)
4.3.3 Supercharged piston engines
117(2)
4.4 Turbine engine
119(12)
4.4.1 Turbojet engine
119(2)
4.4.2 Turbofan engine
121(2)
4.4.3 Turboprop engine
123(2)
4.4.4 Turboshaft engine
125(1)
4.4.5 Ramjet engine
126(2)
4.4.6 Rocket engine
128(3)
4.5 Other propeller-driven engines
131(2)
4.5.1 Solar-powered engine
131(1)
4.5.2 Electric engine
131(1)
4.5.3 Human-powered engine
132(1)
4.6 Engine performance criteria
133(10)
4.6.1 Engine efficiency
133(4)
4.6.2 Engine performance at various altitudes and speeds
137(1)
4.6.3 Specific fuel consumption
138(5)
4.7 Engine performance calculations
143(13)
4.7.1 Flat rating
143(2)
4.7.2 Variations of power and thrust with aircraft speed
145(2)
4.7.2.1 Piston-prop engine and turboprop engine
145(1)
4.7.2.2 Turbojet engine
146(1)
4.7.2.3 Turbofan engine
146(1)
4.7.3 Variations of power and thrust with altitude
147(5)
4.7.3.1 Piston engine
147(2)
4.7.3.2 Turbojet engine
149(1)
4.7.3.3 Turbofan engine
150(1)
4.7.3.4 Turboprop engine
151(1)
4.7.4 Variations of specific fuel consumption with altitude
152(1)
4.7.4.1 Piston engine
152(1)
4.7.4.2 Turbojet engine, turbofan engine, and turboprop engine
152(1)
4.7.5 Variations of specific fuel consumption with speed
153(2)
4.7.5.1 Piston engine
153(1)
4.7.5.2 Turbojet engine
154(1)
4.7.5.3 Turbofan engine
155(1)
4.7.5.4 Turboprop engine
155(1)
4.7.6 Power of electric engines
155(1)
4.8 Propeller performance
156(16)
4.8.1 Introduction
156(1)
4.8.2 Definitions
157(3)
4.8.3 Propeller classifications
160(3)
4.8.3.1 Fixed-pitch propeller
160(1)
4.8.3.2 Ground adjustable propeller
161(1)
4.8.3.3 Variable-pitch propeller
161(1)
4.8.3.4 Constant-speed propeller
161(1)
4.8.3.5 Special pitch modes
162(1)
4.8.3.6 Contra-rotating propellers
163(1)
4.8.4 Calculations
163(15)
4.8.4.1 Propeller tip speed
163(1)
4.8.4.2 Propeller twist angle
164(2)
4.8.4.3 Modified momentum theory
166(3)
4.8.4.4 Practical use of propeller charts
169(3)
Problems
172(3)
References
175(2)
5 Straight-level flight: jet aircraft 177(76)
5.1 Introduction
177(1)
5.2 Fundamental equations
178(10)
5.2.1 Steady-state trim equations
178(2)
5.2.2 Drag, thrust, and velocity relationship
180(2)
5.2.3 Velocity-angle-of-attack relationship
182(1)
5.2.4 Maximum lift-to-drag ratio ((L/D)max)
183(5)
5.3 Specific speeds in straight-line level flight
188(10)
5.3.1 Maximum speed (Vmax)
189(4)
5.3.2 Minimum drag speed
193(4)
5.3.3 Maximum lift-to-drag ratio speed
197(1)
5.4 Range
198(21)
5.4.1 Definition
199(1)
5.4.2 Calculation of range
200(9)
5.4.2.1 Flight program 1: constant-altitude, constant-lift-coefficient flight
204(2)
5.4.2.2 Flight program 2: constant-airspeed, constant-lift-coefficient flight
206(1)
5.4.2.3 Flight program 3: constant-altitude, constant-airspeed flight
207(2)
5.4.3 Speed for maximum range (VmaxR)
209(2)
5.4.3.1 Constant-speed cruising flight
209(2)
5.4.3.2 Non-constant-speed cruising flight
211(1)
5.4.4 Calculation of maximum range
211(3)
5.4.4.1 Constant-altitude, constant-lift-coefficient flight
211(1)
5.4.4.2 Constant-airspeed, constant-lift-coefficient flight
212(1)
5.4.4.3 Constant-altitude, constant-airspeed flight
212(2)
5.4.5 Practical considerations
214(5)
5.4.5.1 Optimum fuel weight
214(1)
5.4.5.2 Wind effect
215(4)
5.4.6 Comparison and conclusion
219(1)
5.5 Endurance
219(11)
5.5.1 Definition of endurance
220(1)
5.5.2 Endurance calculation
220(4)
5.5.2.1 Flight program 1: constant-altitude, constant-lift-coefficient flight
221(1)
5.5.2.2 Flight program 2: constant-airspeed, constant-lift-coefficient flight
222(1)
5.5.2.3 Flight program 3: constant-altitude, constant-airspeed flight
222(2)
5.5.3 Maximum endurance velocity
224(1)
5.5.4 Maximum endurance
225(3)
5.5.4.1 Constant-altitude, constant-lift coefficient
225(1)
5.5.4.2 Constant-airspeed, constant-lift coefficient
226(1)
5.5.4.3 Constant-altitude, constant-airspeed flight
226(2)
5.5.5 Practical considerations
228(2)
5.5.5.1 Altitude for maximum endurance
228(1)
5.5.5.2 Comparison between tmaxR and Emax
228(1)
5.5.5.3 Comparison between VmaxE and VmaxR
229(1)
5.5.5.4 Effect of wind on endurance
229(1)
5.6 Ceiling
230(6)
5.6.1 Definition
230(2)
5.6.2 Calculation
232(4)
5.7 Cruise performance
236(10)
5.7.1 Cruise speed
236(3)
5.7.1.1 Based on engine chart
237(1)
5.7.1.2 Based on range mission
238(1)
5.7.2 Cruise altitude
239(7)
Problems
246(5)
References
251(2)
6 Straight-level flight: propeller-driven aircraft 253(52)
6.1 Introduction
253(1)
6.2 Basic fundamentals
253(3)
6.3 Specific speeds
256(12)
6.3.1 Minimum power speed
256(7)
6.3.2 Minimum drag speed (liminD)
263(1)
6.3.3 Maximum lift-to-drag ratio speed
263(2)
6.3.4 Maximum speed
265(3)
6.4 Range
268(13)
6.4.1 Introduction
268(1)
6.4.2 Regular range calculation
268(6)
6.4.2.1 Constant-lift-coefficient cruising flight
270(1)
6.4.2.2 Non-constant-lift-coefficient cruising flight
271(3)
6.4.3 Maximum range calculation
274(2)
6.4.3.1 Constant-lift-coefficient cruising flight
274(1)
6.4.3.2 Non-constant-lift-coefficient cruising flight
275(1)
6.4.4 Maximum range speed
276(3)
6.4.5 Comparison and conclusion
279(2)
6.5 Endurance
281(9)
6.5.1 Regular endurance
281(3)
6.5.1.1 Flight program 1: constant-altitude, constant-lift-coefficient flight
283(1)
6.5.1.2 Flight program 2: constant-airspeed, constant-lift-coefficient flight
283(1)
6.5.1.3 Flight program 3: constant-altitude, constant-airspeed flight
283(1)
6.5.2 Maximum endurance speed for prop-driven aircraft
284(1)
6.5.2.1 Flight program 1: constant-altitude, constant-lift-coefficient flight
284(1)
6.5.2.2 Flight program 2: constant-airspeed, constant-lift-coefficient flight
284(1)
6.5.2.3 Flight program 3: constant-altitude, constant-airspeed flight
285(1)
6.5.3 Maximum endurance
285(4)
6.5.3.1 Flight program 1: constant-altitude, constant-lift-coefficient flight
285(1)
6.5.3.2 Flight program 2: constant-airspeed, constant-lift-coefficient flight
286(1)
6.5.3.3 Flight program 3: constant-altitude, constant-airspeed flight
287(2)
6.5.4 Comparison and conclusion
289(1)
6.6 Ceiling
290(5)
6.6.1 Definition
290(1)
6.6.2 Absolute ceiling for aircraft with piston-prop engine
291(2)
6.6.3 Absolute ceiling for aircraft with turboprop engine
293(2)
6.7 Cruise performance
295(3)
6.7.1 Cruise speed
295(2)
6.7.1.1 Based on engine chart
296(1)
6.7.1.2 Based on range mission
297(1)
6.7.2 Cruise altitude
297(1)
6.8 Summary and comparison
298(1)
Problems
299(3)
References
302(3)
7 Climb and descent 305(58)
7.1 Introduction
305(1)
7.2 Basic fundamentals
306(4)
7.3 Governing equations of climb
310(7)
7.4 Fastest climb
317(11)
7.4.1 Jet aircraft
318(6)
7.4.1.1 Calculation of speed for maximum rate of climb
318(2)
7:4.1.2 Calculation of climb angle for maximum rate of climb
320(4)
7.4.2 Propeller-driven aircraft
324(4)
7.4.2.1 Airspeed for maximum rate of climb
324(1)
7.4.2.2 Climb angle for maximum rate of climb
325(3)
7.5 Steepest climb
328(11)
7.5.1 Jet aircraft
331(4)
7.5.2 Propeller-driven aircraft
335(15)
7.5.2.1 Calculation of aircraft speed for maximum climb angle
335(2)
7.5.2.2 Calculation of maximum climb angle
337(2)
7.6 Interim summary
339(1)
7.7 Graphical analysis
339(2)
7.8 Most-economical climb
341(1)
7.9 Time to climb and fuel to climb
342(3)
7.10 Descent
345(5)
7.11 Gliding flight
350(7)
7.11.1 Gliding flight with maximum ground distance
352(1)
7.11.2 Gliding flight with maximum flight time
353(4)
Problems
357(5)
References
362(1)
8 Takeoff and landing 363(44)
8.1 Introduction
363(1)
8.2 Takeoff principles
364(6)
8.3 Takeoff performance analysis
370(16)
8.3.1 Ground segment
371(7)
8.3.2 Rotation segment
378(1)
8.3.3 Airborne segment
379(7)
8.4 Landing
386(10)
8.4.1 Landing segments
386(2)
8.4.2 Landing calculations
388(8)
8.4.2.1 Approach section
388(2)
8.4.2.2 Transition
390(1)
8.4.2.3 Ground roll
391(5)
8.5 Effect of wind and slope on takeoff and landing
396(5)
8.5.1 Effect of headwind on takeoff
397(1)
8.5.2 Effect of slope on takeoff
398(3)
Problems
401(4)
References
405(2)
9 Turn performance and flight maneuvers 407(84)
9.1 Introduction
407(2)
9.2 Fundamentals of turning flight
409(12)
9.2.1 Governing equations
409(3)
9.2.2 Load factor and bank angle
412(3)
9.2.3 Turn radius
415(2)
9.2.4 Turn rate
417(4)
9.3 Level turn performance: jet aircraft
421(13)
9.3.1 Maximum producible load factor
422(1)
9.3.2 Corner velocity
423(2)
9.3.3 Maximum of the maximum load factor
425(1)
9.3.4 Airspeed that corresponds to the maximum of the maximum load factor
426(8)
9.4 Level turn performance: prop-driven aircraft
434(8)
9.4.1 Maximum producible load factor
434(1)
9.4.2 Airspeed that corresponds to the maximum of the maximum load factor
435(1)
9.4.3 Maximum of the maximum load factor
436(1)
9.4.4 Corner velocity
436(6)
9.5 Maneuverability: jet aircraft
442(13)
9.5.1 Fastest turn: jet aircraft
442(6)
9.5.2 Tightest turn: jet aircraft
448(7)
9.6 Maneuverability: prop-driven aircraft
455(9)
9.6.1 Fastest turn: prop-driven aircraft
455(4)
9.6.2 Tightest turn: prop-driven aircraft
459(5)
9.7 Vertical maneuvers
464(5)
9.7.1 Pull-up and pull-out
465(3)
9.7.2 Pull-down
468(1)
9.8 Zero-gravity flight
469(5)
9.8.1 Orbital flight
470(1)
9.8.2 Free fall cruise
470(4)
9.9 V-n diagram
474(12)
9.9.1 Flight envelope
474(1)
9.9.2 Load factor
475(2)
9.9.3 Maneuver diagram
477(1)
9.9.4 Gust V-n diagram
478(3)
9.9.5 Flight envelope: combined V-n diagram
481(5)
Problems
486(4)
References
490(1)
10 Aircraft performance analysis using numerical methods and MATLAB® 491(26)
10.1 Introduction
491(1)
10.2 Takeoff rotation analysis using numerical methods
492(3)
10.2.1 Mission analysis
492(1)
10.2.2 Governing equations
492(3)
10.3 Free fall simulation
495(5)
10.3.1 Flight analysis
495(1)
10.3.2 Governing equations
495(5)
10.4 Takeoff airborne section analysis using numerical methods
500(4)
10.4.1 Mission description
500(1)
10.4.2 Governing equations
500(4)
10.5 Climb analysis using numerical methods: construct the hodograph
504(2)
10.5.1 Review of fundamentals
504(2)
10.6 Fastest climb analysis using numerical methods
506(3)
10.6.1 Fastest climb analysis
506(3)
10.7 Time to climb analysis using numerical methods
509(1)
10.7.1 Review of fundamentals
509(1)
10.8 Parabolic path for a zero-gravity flight
510(3)
10.8.1 Mission analysis and governing equations
510(3)
Problems
513(2)
References
515(2)
Appendix A: Standard atmosphere, SI units 517(2)
Appendix B: Standard atmosphere, English units 519(2)
Appendix C: Performance characteristics of several aircraft 521(6)
Appendix D: Flight records 527(10)
Appendix E: A typical project for students 537(2)
Index 539
Mohammad H. Sadraey is an Associate Professor in the Engineering School at Southern New Hampshire University, New Hampshire, USA. Dr. Sadraeys main research interests are in aircraft design techniques, Aircraft Performa, Flight Dynamics, and design and automatic control of unmanned aircraft. He received his MSc. in Aerospace Engineering in 1995 from RMIT, Melbourne, Australia, and his Ph.D. in Aerospace Engineering from the University of Kansas, Kansas, USA. Dr. Sadraey is a senior member of the American Institute of Aeronautics and Astronautics (AIAA). He has over 20 years of professional experience in academia and industry. He is the author of three books including "Aircraft Design; A system Engineering Approach" published by Wiley publications in 2012.