Muutke küpsiste eelistusi

Algebra, Geometry and Software Systems 2003 ed. [Kõva köide]

Edited by , Edited by
  • Formaat: Hardback, 332 pages, kõrgus x laius: 235x155 mm, kaal: 688 g, XIV, 332 p., 1 Hardback
  • Ilmumisaeg: 19-Mar-2003
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540002561
  • ISBN-13: 9783540002567
  • Kõva köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Hardback, 332 pages, kõrgus x laius: 235x155 mm, kaal: 688 g, XIV, 332 p., 1 Hardback
  • Ilmumisaeg: 19-Mar-2003
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3540002561
  • ISBN-13: 9783540002567
In many fields of modern mathematics specialised scientific software becomes increasingly important. Hence, tremendous effort is taken by numerous groups all over the world to develop appropriate solutions. This book contains surveys and research papers on mathematical software and algorithms. The common thread is that the field of mathematical applications lies on the border between algebra and geometry. Topics include polyhedral geometry, elimination theory, algebraic surfaces, Gröbner bases, triangulations of point sets and the mutual relationship. This diversity is accompanied by the abundance of available software systems which often handle only special mathematical aspects. Therefore the volume's other focus is on solutions towards the integration of mathematical software systems. This includes low-level and XML based high-level communication channels as well as general framework for modular systems.
Preface v
Beneath-and-Beyond Revisited
1(22)
Michael Joswig
Introduction
1(1)
Definitions, an Algorithm, and a Classical Theorem
2(4)
Sizes of Triangulations and Algorithm Complexity
6(6)
On the Implementation
12(1)
Empirical Results
13(4)
Concluding Remarks
17(6)
References
20(3)
Some Algorithmic Problems in Polytope Theory
23(26)
Volker Kaibel
Marc E. Pfetsch
Introduction
23(3)
Coordinate Descriptions
26(5)
Combinatorial Structure
31(4)
Isomorphism
35(2)
Optimization
37(2)
Realizability
39(1)
Beyond Polytopes
40(9)
References
45(4)
Computing Triangulations Using Oriented Matroids
49(28)
Julian Pfeifle
Jorg Rambau
Introduction
49(1)
The oriented matroid of a Point Configuration
50(6)
Applications of the Oriented Matroid: How to Find Triangulations
56(5)
Implementing the Ideas: TOPCOM
61(2)
Exploring Further Structures
63(6)
Implementing the Ideas: Software Integration with polymake
69(2)
Conclusion
71(6)
References
71(2)
A Equivariant BFS: An Example Run for the Six-gon
73(4)
Discrete Geometry for Algebraic Elimination
77(16)
Ioannis Z. Emiris
Introduction
77(1)
Toric Elimination Theory
78(3)
Matrix Formulae
81(3)
Algebraic Solving by Linear Algebra
84(4)
Experiments
88(5)
References
90(3)
Sparse Resultant Perturbations
93(16)
Carlos D' Andrea
Ioannis Z. Emiris
Introduction
93(2)
Related Work
95(2)
Sparse Projection Operators
97(2)
Matrix Construction
99(2)
Experiments
101(2)
Geometric Applications
103(6)
References
106(3)
Numerical Irreducible Decomposition Using PHCpack
109(22)
Andrew J. Sommese
Jan Verschelde
Charles W. Wampler
Introduction
109(3)
Toolbox and Blackbox Design of PHCpack
112(1)
A Maple Interface to PHCpack
113(1)
Numerical Elimination Methods
114(3)
Factoring into Irreducible Components
117(2)
A Membership Test
119(2)
A Numerical Blackbox Decomposer
121(1)
Benchmark Applications
122(3)
Conclusions
125(6)
References
126(5)
Generating Kummer Type Formulas for Hypergeometric Functions
131(16)
Nobuki Takayama
Introduction
131(1)
Hypergeometric Function Associated to Δk--1 x Δn--k--1
132(2)
Configuration Space
134(3)
Series Solutions
137(2)
Deriving Kummer Type Formulas
139(8)
References
144(3)
A Computer Algebra System: Risa/Asir
147(16)
Masayuki Noro
What is Risa/Asir?
147(1)
Risa Objects
148(2)
Functions in Risa/Asir
150(6)
Parallel and Distributed Computation
156(1)
Extending Risa/Asir
157(3)
Future Work
160(3)
References
161(2)
Singular in a Framework for Polynomial Computations
163(14)
Hans Schonemann
Introduction
163(1)
Some Historical Remarks
164(1)
Basic Polynomial Operations and Representations
164(6)
Arithmetic in Fields
170(1)
Arithmetics for Polynomials: Refinement: Bucket Addition
171(1)
Memory Management
172(2)
A Proposal for Distributing Polynomials
174(3)
References
176(1)
Computing Simplicial Homology Based on Efficient Smith Normal Form Algorithms
177(30)
Jean-Guillaume Dumas
Frank Heckenbach
David Saunders
Volkmar Welker
Introduction
177(2)
Generating the Boundary Matrices
179(2)
The Elimination Algorithm
181(2)
Valence Algorithm
183(10)
Other Methods
193(3)
Sample Applications
196(5)
Other Invariants of Simplicial Complexes
201(6)
References
204(3)
The Geometry of Cn is Important for the Algebra of Elementary Functions
207(18)
James H. Davenport
Introduction
207(2)
How to Handle Multi-valued Functions
209(3)
Simplifying &redic;z2
212(1)
Simplifying Equations (4) and (5)
213(1)
Additivity of arctan
213(4)
Strategies for Simplifying Elementary Expressions
217(1)
Strategies to Algorithms?
218(4)
Conclusion
222(3)
References
224(1)
A Visual Introduction to Cubic Surfaces Using the Computer Software Spicy
225(14)
Duco van Straten
Oliver Labs
Introduction
225(2)
Blowing-Up the Plane in Six Points
227(2)
Visualizing Cubic Surfaces Using SPICY
229(10)
References
235(1)
Clebsch's Explicit Equation for the Covariant of Order 9 that Meets the Cubic Surface in the 27 Lines
236(1)
Coble's Explicit Parametrization for the Cubic Surface and the 27 Lines on it
237(2)
A Client-Server System for the Visualisation of Algebraic Surfaces on the Web
239(16)
Richard Morris
Introduction
239(1)
The Client Applet
240(1)
The Server
241(8)
Examples of Algebraic Surfaces
249(2)
Conclusion
251(4)
References
253(2)
Visualizing Maple Plots with JavaViewLib
255(22)
Steven Peter Dugaro
Konrad Polthier
Introduction
255(1)
Visualization in Maple and JavaView
256(2)
JavaViewLib - A New Maple Powertool
258(7)
Importing and Exporting Geometries
265(4)
Additional Features
269(5)
Conclusion and Outlook
274(1)
Downloading JavaViewLib
275(2)
References
275(2)
Automated Generation of Diagrams with Maple and Java
277(12)
Dongming Wang
Introduction and Motivation
277(2)
Sketch of the Method
279(2)
Implementation
281(2)
Special Techniques
283(2)
Some Examples
285(4)
References
287(2)
Interactive Mathematical Documents on the Web
289(20)
Arjeh M. Cohen
Hans Cuypers
Ernesto Reinaldo Barreiro
Hans Sterk
Introduction
289(1)
A Framework for Interactive Mathematics
290(5)
The Mathematical Document Server
295(3)
MathBook, Our Implementation
298(6)
Conclusion
304(5)
References
306(3)
Distributed Computing for Conglomerate Mathematical Systems
309(18)
Andrew Solomon
Introduction
309(1)
Current Techniques for Integration of Mathematical Systems
310(4)
A Synopsis of Distributed Computing
314(2)
A Distributed Framework for Mathematical Systems
316(1)
Conclusion
317(10)
References
318(2)
A Technical Concepts and Terminology
320(7)
Index 327(4)
Software Systems 331