Muutke küpsiste eelistusi

Algebraic Approach to Data Processing: Techniques and Applications 2022 ed. [Pehme köide]

  • Formaat: Paperback / softback, 250 pages, kõrgus x laius: 235x155 mm, kaal: 409 g, 4 Illustrations, color; 4 Illustrations, black and white; XIII, 250 p. 8 illus., 4 illus. in color., 1 Paperback / softback
  • Sari: Studies in Big Data 115
  • Ilmumisaeg: 17-Oct-2023
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031167821
  • ISBN-13: 9783031167829
Teised raamatud teemal:
  • Pehme köide
  • Hind: 104,29 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 122,69 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 250 pages, kõrgus x laius: 235x155 mm, kaal: 409 g, 4 Illustrations, color; 4 Illustrations, black and white; XIII, 250 p. 8 illus., 4 illus. in color., 1 Paperback / softback
  • Sari: Studies in Big Data 115
  • Ilmumisaeg: 17-Oct-2023
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031167821
  • ISBN-13: 9783031167829
Teised raamatud teemal:
The book explores a new general approach to selectingand designingdata processing techniques. Symmetry and invariance ideas behind this algebraic approach have been successful in physics, where many new theories are formulated in symmetry terms.





The book explains this approach and expands it to new application areas ranging from engineering, medicine, education to social sciences. In many cases, this approach leads to optimal techniques and optimal solutions.





That the same data processing techniques help us better analyze wooden structures, lung dysfunctions, and deep learning algorithms is a good indication that these techniques can be used in many other applications as well.





The book is recommended to researchers and practitioners who need to select a data processing techniqueor who want to design a new technique when the existing techniques do not work. It is also recommended to students who want to learn the state-of-the-art data processing.





 
Introduction.- What Are the Most Natural and the Most Frequent
Transformations.- Which Functions and Which Families of Functions Are
Invariant.- What Is the General Relation Between Invariance And
Optimality.- General Application: Dynamical Systems.- First Application to
Physics: Why Liquids?.- Second Application to Physics: Warping of Our Galaxy.