Preface to the Third Edition |
|
ix | |
Preface to the Fourth Edition |
|
xv | |
Index of Notation |
|
xvii | |
The Origins of Algebraic Number Theory |
|
1 | (8) |
|
|
9 | (120) |
|
|
11 | (26) |
|
|
12 | (3) |
|
1.2 Factorization of Polynomials |
|
|
15 | (7) |
|
|
22 | (2) |
|
1.4 Symmetric Polynomials |
|
|
24 | (2) |
|
|
26 | (2) |
|
|
28 | (5) |
|
|
33 | (4) |
|
|
37 | (26) |
|
|
38 | (2) |
|
2.2 Conjugates and Discriminants |
|
|
40 | (3) |
|
|
43 | (4) |
|
|
47 | (3) |
|
|
50 | (3) |
|
|
53 | (6) |
|
|
59 | (4) |
|
3 Quadratic and Cyclotomic Fields |
|
|
63 | (12) |
|
|
63 | (3) |
|
|
66 | (5) |
|
|
71 | (4) |
|
4 Factorization into Irreducibles |
|
|
75 | (28) |
|
4.1 Historical Background |
|
|
77 | (1) |
|
4.2 Trivial Factorizations |
|
|
78 | (3) |
|
4.3 Factorization into Irreducibles |
|
|
81 | (3) |
|
4.4 Examples of Non-Unique Factorization into Irreducibles |
|
|
84 | (4) |
|
|
88 | (4) |
|
|
92 | (1) |
|
4.7 Euclidean Quadratic Fields |
|
|
93 | (3) |
|
4.8 Consequences of Unique Factorization |
|
|
96 | (2) |
|
4.9 The Ramanujan-Nagell Theorem |
|
|
98 | (2) |
|
|
100 | (3) |
|
|
103 | (26) |
|
5.1 Historical Background |
|
|
104 | (3) |
|
5.2 Prime Factorization of Ideals |
|
|
107 | (9) |
|
|
116 | (8) |
|
5.4 Non-Unique Factorization in Cyclotomic Fields |
|
|
124 | (2) |
|
|
126 | (3) |
|
|
129 | (38) |
|
|
131 | (8) |
|
|
131 | (3) |
|
|
134 | (4) |
|
|
138 | (1) |
|
|
139 | (6) |
|
|
139 | (3) |
|
7.2 The Two-Squares Theorem |
|
|
142 | (1) |
|
7.3 The Four-Squares Theorem |
|
|
143 | (1) |
|
|
144 | (1) |
|
8 Geometric Representation of Algebraic Numbers |
|
|
145 | (6) |
|
|
145 | (5) |
|
|
150 | (1) |
|
9 Class-Group and Class-Number |
|
|
151 | (16) |
|
|
152 | (1) |
|
|
153 | (4) |
|
9.3 Finiteness of the Class-Group |
|
|
157 | (1) |
|
9.4 How to Make an Ideal Principal |
|
|
158 | (4) |
|
9.5 Unique Factorization of Elements in an Extension Ring |
|
|
162 | (2) |
|
|
164 | (3) |
|
III Number-Theoretic Applications |
|
|
167 | (110) |
|
|
169 | (14) |
|
10.1 Factorization of a Rational Prime |
|
|
169 | (3) |
|
|
172 | (4) |
|
10.3 Some Class-Number Calculations |
|
|
176 | (3) |
|
10.4 Table of Class-Numbers |
|
|
179 | (1) |
|
|
180 | (3) |
|
11 Kummer's Special Case of Fermat's Last Theorem |
|
|
183 | (18) |
|
|
183 | (3) |
|
11.2 Elementary Considerations |
|
|
186 | (2) |
|
|
188 | (5) |
|
|
193 | (3) |
|
|
196 | (1) |
|
|
197 | (4) |
|
12 The Path to the Final Breakthrough |
|
|
201 | (14) |
|
|
201 | (2) |
|
|
203 | (2) |
|
12.3 Modular Functions and Elliptic Curves |
|
|
205 | (1) |
|
12.4 The Taniyama-Shimura-Weil Conjecture |
|
|
206 | (1) |
|
12.5 Prey's Elliptic Equation |
|
|
207 | (1) |
|
12.6 The Amateur who Became a Model Professional |
|
|
208 | (3) |
|
|
211 | (1) |
|
12.8 Flash of Inspiration |
|
|
211 | (2) |
|
|
213 | (2) |
|
|
215 | (20) |
|
|
216 | (1) |
|
|
217 | (5) |
|
13.3 Rational Conics and the Pythagorean Equation |
|
|
222 | (2) |
|
|
224 | (3) |
|
13.5 The Tangent/Secant Process |
|
|
227 | (1) |
|
13.6 Group Structure on an Elliptic Curve |
|
|
228 | (4) |
|
13.7 Applications to Diophantine Equations |
|
|
232 | (2) |
|
|
234 | (1) |
|
|
235 | (24) |
|
14.1 Trigonometry Meets Diophantus |
|
|
235 | (8) |
|
|
243 | (6) |
|
14.3 Legendre and Weierstrass |
|
|
249 | (2) |
|
|
251 | (5) |
|
|
256 | (3) |
|
15 Wiles's Strategy and Recent Developments |
|
|
259 | (18) |
|
15.1 The Frey Elliptic Curve |
|
|
259 | (2) |
|
15.2 The Taniyama-Shimura-Weil Conjecture |
|
|
261 | (3) |
|
15.3 Sketch Proof of Fermat's Last Theorem |
|
|
264 | (2) |
|
|
266 | (10) |
|
|
276 | (1) |
|
|
277 | (2) |
|
|
279 | (20) |
|
A.1 Quadratic Equations in Zm |
|
|
280 | (2) |
|
|
282 | (5) |
|
|
287 | (9) |
|
|
296 | (3) |
|
B Dirichlet's Units Theorem |
|
|
299 | (10) |
|
|
299 | (1) |
|
|
300 | (1) |
|
B.3 Embedding the Unit Group in Logarithmic Space |
|
|
301 | (1) |
|
|
302 | (5) |
|
|
307 | (2) |
Bibliography |
|
309 | (8) |
Index |
|
317 | |