Preface |
|
xiii | |
Authors |
|
xvii | |
Introduction |
|
1 | (8) |
|
1 Normal Forms for Vectors and Univariate Polynomials |
|
|
9 | (8) |
|
|
9 | (2) |
|
|
9 | (1) |
|
1.1.2 Monomials and polynomials |
|
|
10 | (1) |
|
|
11 | (6) |
|
1.2.1 Normal forms of vectors |
|
|
11 | (4) |
|
1.2.2 Normal forms of univariate polynomials |
|
|
15 | (2) |
|
2 Noncommutative Associative Algebras |
|
|
17 | (50) |
|
|
17 | (3) |
|
2.1.1 Noncommutative polynomial equations |
|
|
18 | (1) |
|
2.1.2 Noncommutative algebras and Koszul duality |
|
|
19 | (1) |
|
2.2 Free associative algebras |
|
|
20 | (2) |
|
2.2.1 Monomials and polynomials |
|
|
20 | (1) |
|
2.2.2 Presentation by generators and relations |
|
|
21 | (1) |
|
|
22 | (9) |
|
|
22 | (3) |
|
|
25 | (3) |
|
|
28 | (3) |
|
2.4 Computing Grobner bases |
|
|
31 | (8) |
|
|
31 | (5) |
|
2.4.2 The Buchberger algorithm |
|
|
36 | (2) |
|
|
38 | (1) |
|
2.5 Examples of Grobner bases and their applications |
|
|
39 | (19) |
|
2.5.1 Dimensions and Hilbert series of algebras |
|
|
39 | (3) |
|
2.5.2 The group algebra of the symmetric group |
|
|
42 | (5) |
|
2.5.3 Universal enveloping algebras of Lie algebras |
|
|
47 | (4) |
|
2.5.4 PBW bases, Grobner bases, and Koszul duality |
|
|
51 | (3) |
|
2.5.5 Viewing commutative algebras as noncommutative ones |
|
|
54 | (1) |
|
2.5.6 Computation of noncommutative Grobner bases |
|
|
55 | (3) |
|
2.6 Rewriting systems and Grobner bases |
|
|
58 | (3) |
|
2.6.1 Abstract rewriting systems |
|
|
58 | (2) |
|
2.6.2 Ordered rewriting systems |
|
|
60 | (1) |
|
|
61 | (6) |
|
|
67 | (46) |
|
|
67 | (2) |
|
3.1.1 Nonsymmetric collections |
|
|
68 | (1) |
|
3.1.2 Nonsymmetric endomorphism operad |
|
|
68 | (1) |
|
|
69 | (3) |
|
3.2.1 Classical definition of a nonsymmetric operad |
|
|
69 | (1) |
|
3.2.2 Definition via partial compositions |
|
|
70 | (2) |
|
3.3 Free nonsymmetric operads |
|
|
72 | (6) |
|
|
72 | (2) |
|
3.3.2 Tree monomials and tree polynomials |
|
|
74 | (2) |
|
3.3.3 Grafting trees and the free nonsymmetric operad |
|
|
76 | (2) |
|
3.3.4 Presentation by generators and relations |
|
|
78 | (1) |
|
|
78 | (13) |
|
|
78 | (3) |
|
|
81 | (8) |
|
|
89 | (2) |
|
3.5 Computing Grobner bases |
|
|
91 | (7) |
|
|
91 | (5) |
|
3.5.2 The Buchberger algorithm |
|
|
96 | (1) |
|
|
96 | (2) |
|
3.6 Examples of Grobner bases for nonsymmetric operads |
|
|
98 | (8) |
|
3.6.1 Associative and q-associative operad |
|
|
99 | (2) |
|
3.6.2 The dendriform operad |
|
|
101 | (5) |
|
3.7 Normal forms for algebras over nonsymmetric operads |
|
|
106 | (3) |
|
3.7.1 Extensions and normal forms in algebras |
|
|
107 | (1) |
|
3.7.2 Example of normal forms |
|
|
107 | (2) |
|
|
109 | (4) |
|
4 Twisted Associative Algebras and Shuffle Algebras |
|
|
113 | (28) |
|
|
113 | (1) |
|
4.2 Twisted associative algebras and shuffle algebras |
|
|
114 | (7) |
|
4.2.1 Two definitions of a twisted associative algebra |
|
|
114 | (4) |
|
4.2.2 Free twisted associative algebras |
|
|
118 | (1) |
|
|
119 | (2) |
|
4.3 Free shuffle algebras |
|
|
121 | (4) |
|
4.3.1 Monomials and polynomials |
|
|
121 | (2) |
|
4.3.2 Presentation by generators and relations |
|
|
123 | (1) |
|
4.3.3 Twisted associative algebras as shuffle algebras |
|
|
124 | (1) |
|
|
125 | (7) |
|
|
125 | (2) |
|
|
127 | (4) |
|
|
131 | (1) |
|
4.5 Computing Grobner bases |
|
|
132 | (4) |
|
|
132 | (2) |
|
4.5.2 The Buchberger algorithm |
|
|
134 | (1) |
|
|
134 | (2) |
|
4.6 Examples of shuffle algebras and their applications |
|
|
136 | (2) |
|
4.6.1 Shuffle algebras and patterns in permutations |
|
|
136 | (1) |
|
4.6.2 Antisymmetrizer shuffle algebras |
|
|
136 | (1) |
|
4.6.3 Twisted commutative algebras and shuffle algebras |
|
|
137 | (1) |
|
|
138 | (3) |
|
5 Symmetric Operads and Shuffle Operads |
|
|
141 | (46) |
|
|
141 | (1) |
|
5.2 Symmetric operads and shuffle operads |
|
|
142 | (8) |
|
5.2.1 Two definitions of a symmetric operad |
|
|
142 | (2) |
|
5.2.2 Free symmetric operads |
|
|
144 | (5) |
|
|
149 | (1) |
|
|
150 | (9) |
|
5.3.1 Tree monomials and tree polynomials |
|
|
150 | (4) |
|
5.3.2 Presentation by generators and relations |
|
|
154 | (1) |
|
5.3.3 Symmetric operads as shuffle operads |
|
|
154 | (3) |
|
5.3.4 Applying the forgetful functor |
|
|
157 | (2) |
|
|
159 | (11) |
|
|
159 | (4) |
|
|
163 | (6) |
|
|
169 | (1) |
|
5.5 Computing Grobner bases |
|
|
170 | (5) |
|
|
170 | (3) |
|
5.5.2 The Buchberger algorithm |
|
|
173 | (1) |
|
|
173 | (2) |
|
5.6 Examples of Grobner bases for shuffle operads |
|
|
175 | (7) |
|
5.6.1 Shuffle Lie and associative operads |
|
|
175 | (3) |
|
5.6.2 Symmetric and shuffle operad PreLie |
|
|
178 | (1) |
|
5.6.3 Symmetric operads as nonsymmetric operads |
|
|
179 | (1) |
|
5.6.4 The operad PreLie as a Lie-module |
|
|
180 | (2) |
|
|
182 | (5) |
|
6 Operadic Homological Algebra and Grobner Bases |
|
|
187 | (34) |
|
|
187 | (2) |
|
6.1.1 Symmetry isomorphisms and the Koszul sign rule |
|
|
187 | (2) |
|
6.2 First instances of Koszul signs for graded operads |
|
|
189 | (10) |
|
6.2.1 Determinant operad and operadic suspension |
|
|
189 | (2) |
|
6.2.2 Koszul signs in axioms of an operad |
|
|
191 | (1) |
|
6.2.3 Totally associative operad |
|
|
192 | (1) |
|
6.2.4 Normal forms and higher Koszul duality |
|
|
193 | (6) |
|
6.3 Koszul duality for operads |
|
|
199 | (11) |
|
6.3.1 Quadratic operads and cooperads |
|
|
199 | (2) |
|
6.3.2 Examples of Koszul dual operads |
|
|
201 | (2) |
|
6.3.3 The Koszul property of a quadratic operad |
|
|
203 | (3) |
|
6.3.4 The Ginzburg--Kapranov criterion |
|
|
206 | (2) |
|
6.3.5 Filtered distributive laws between quadratic operads |
|
|
208 | (2) |
|
6.4 Models for operads from Grobner bases |
|
|
210 | (7) |
|
|
210 | (2) |
|
6.4.2 Resolution for monomial relations |
|
|
212 | (2) |
|
6.4.3 Resolution for general relations |
|
|
214 | (3) |
|
|
217 | (4) |
|
7 Commutative Grobner Bases |
|
|
221 | (32) |
|
|
221 | (1) |
|
7.2 Commutative associative polynomials |
|
|
222 | (6) |
|
|
222 | (1) |
|
|
222 | (2) |
|
|
224 | (4) |
|
7.3 Equivalent definitions of commutative Grobner bases |
|
|
228 | (5) |
|
7.3.1 Ideals, generators, and zero sets |
|
|
228 | (1) |
|
7.3.2 First definition of a Grobner basis: leading monomials |
|
|
229 | (1) |
|
7.3.3 Second definition of a Grobner basis: long division |
|
|
229 | (1) |
|
7.3.4 Third definition of a Grobner basis: the Church--Rosser property |
|
|
230 | (1) |
|
7.3.5 Equivalence of the three definitions |
|
|
231 | (1) |
|
7.3.6 S-polynomials and Buchberger's criterion |
|
|
232 | (1) |
|
7.4 Classification of commutative monomial orders |
|
|
233 | (5) |
|
7.4.1 The classification theorem |
|
|
233 | (4) |
|
7.4.2 Examples and non-examples of monomial orders |
|
|
237 | (1) |
|
7.5 Zero-dimensional ideals |
|
|
238 | (4) |
|
7.5.1 Characterization of zero-dimensional ideals |
|
|
239 | (1) |
|
7.5.2 Two examples, and a distribution table |
|
|
240 | (2) |
|
7.6 Complexity of Grobner bases: a historical survey |
|
|
242 | (7) |
|
7.6.1 A digression on ordinals and computability |
|
|
243 | (1) |
|
7.6.2 Exponential space complexity |
|
|
243 | (1) |
|
7.6.3 Pioneering work by Hermann and Noether |
|
|
244 | (1) |
|
7.6.4 A detour: Seidenberg |
|
|
245 | (1) |
|
7.6.5 Mayr and Meyer, Bayer and Stillman |
|
|
245 | (2) |
|
7.6.6 An example: the knapsack problem |
|
|
247 | (2) |
|
|
249 | (4) |
|
8 Linear Algebra over Polynomial Rings |
|
|
253 | (28) |
|
|
253 | (1) |
|
8.2 Rank of a polynomial matrix; determinantal ideals |
|
|
254 | (3) |
|
8.2.1 The rank of the matrix as a function of the variables |
|
|
254 | (1) |
|
8.2.2 Definition of the rank of a polynomial matrix |
|
|
255 | (1) |
|
8.2.3 Determinantal ideals of a polynomial matrix |
|
|
255 | (2) |
|
8.3 Some elementary examples |
|
|
257 | (6) |
|
8.3.1 Ranks of pseudorandom matrices |
|
|
257 | (2) |
|
8.3.2 Ranks of symmetric matrices |
|
|
259 | (2) |
|
8.3.3 Orthonormal bases in Rn |
|
|
261 | (2) |
|
8.4 Algorithms for linear algebra over polynomial rings |
|
|
263 | (12) |
|
8.4.1 Introduction: elementary row and column operations |
|
|
263 | (1) |
|
8.4.2 Partial row/column reduction (partial Smith form) |
|
|
263 | (2) |
|
8.4.3 Canonical forms of row submodules |
|
|
265 | (10) |
|
8.5 Bibliographical comments |
|
|
275 | (1) |
|
|
276 | (5) |
|
9 Case Study of Nonsymmetric Binary Cubic Operads |
|
|
281 | (26) |
|
|
281 | (1) |
|
9.2 Toy model: the quadratic case |
|
|
282 | (2) |
|
|
284 | (20) |
|
9.3.1 Preliminary analysis |
|
|
284 | (2) |
|
|
286 | (1) |
|
|
287 | (5) |
|
|
292 | (9) |
|
|
301 | (3) |
|
|
304 | (3) |
|
10 Case Study of Nonsymmetric Ternary Quadratic Operads |
|
|
307 | (28) |
|
|
307 | (2) |
|
10.2 Generalities on nonsymmetric operad with one generator |
|
|
309 | (3) |
|
10.2.1 Enumeration and ordering of monomials |
|
|
309 | (1) |
|
10.2.2 Quadratic relations and their consequences |
|
|
310 | (2) |
|
10.3 Nonsymmetric ternary operads |
|
|
312 | (17) |
|
10.3.1 Preliminary analysis |
|
|
312 | (1) |
|
|
313 | (13) |
|
|
326 | (3) |
|
|
329 | (1) |
|
|
329 | (1) |
|
|
330 | (1) |
|
|
330 | (5) |
|
A Maple Code for Buchberger's Algorithm |
|
|
335 | (8) |
|
A.1 First block: Initialization |
|
|
335 | (1) |
|
A.2 Second block: Monomial orders |
|
|
336 | (1) |
|
A.3 Third block: Sorting polynomials |
|
|
337 | (1) |
|
A.4 Fourth block: Standard forms of polynomials |
|
|
338 | (1) |
|
A.5 Fifth block: Reduce and self-reduce |
|
|
339 | (2) |
|
A.6 Sixth block: Main loop -- Buchberger's algorithm |
|
|
341 | (2) |
Bibliography |
|
343 | (20) |
Index |
|
363 | |