|
Chapter 1 Integrated-Circuit Devices and Modelling |
|
|
1 |
(72) |
|
1.1 Semiconductors and pn Junctions |
|
|
1 |
(13) |
|
|
2 |
(2) |
|
1.1.2 Reverse-Biased Diodes |
|
|
4 |
(3) |
|
|
7 |
(2) |
|
1.1.4 Large-Signal Junction Capacitance |
|
|
9 |
(1) |
|
1.1.5 Forward-Biased Junctions |
|
|
10 |
(1) |
|
1.1.6 Junction Capacitance of Forward-Biased Diode |
|
|
11 |
(1) |
|
1.1.7 Small-Signal Model of a Forward-Biased Diode |
|
|
12 |
(1) |
|
|
13 |
(1) |
|
|
14 |
(24) |
|
1.2.1 Symbols for MOS Transistors |
|
|
15 |
(1) |
|
|
16 |
(5) |
|
1.2.3 Large-Signal Modelling |
|
|
21 |
(3) |
|
|
24 |
(1) |
|
1.2.5 p-Channel Transistors |
|
|
24 |
(1) |
|
1.2.6 Low-Frequency Small-Signal Modelling in the Active Region |
|
|
25 |
(5) |
|
1.2.7 High-Frequency Small-Signal Modelling in the Active Region |
|
|
30 |
(3) |
|
1.2.8 Small-Signal Modelling in the Triode and Cutoff Regions |
|
|
33 |
(3) |
|
1.2.9 Analog Figures of Merit and Trade-offs |
|
|
36 |
(2) |
|
|
38 |
(4) |
|
|
38 |
(1) |
|
|
39 |
(1) |
|
1.3.3 MOS Transistor Equations |
|
|
40 |
(2) |
|
1.4 Advanced MOS Modelling |
|
|
42 |
(8) |
|
1.4.1 Subthreshold Operation |
|
|
42 |
(2) |
|
1.4.2 Mobility Degradation |
|
|
44 |
(3) |
|
1.4.3 Summary of Subthreshold and Mobility Degradation Equations |
|
|
47 |
(1) |
|
1.4.4 Parasitic Resistances |
|
|
47 |
(1) |
|
1.4.5 Short-Channel Effects |
|
|
48 |
(1) |
|
|
49 |
(1) |
|
1.5 SPICE Modelling Parameters |
|
|
50 |
(4) |
|
|
50 |
(1) |
|
|
51 |
(1) |
|
1.5.3 Advanced SPICE Models of MOS Transistors |
|
|
51 |
(3) |
|
|
54 |
(6) |
|
|
54 |
(4) |
|
|
58 |
(2) |
|
|
60 |
(8) |
|
1.7.1 Diode Exponential Relationship |
|
|
60 |
(2) |
|
1.7.2 Diode-Diffusion Capacitance |
|
|
62 |
(2) |
|
1.7.3 MOS Threshold Voltage and the Body Effect |
|
|
64 |
(2) |
|
1.7.4 MOS Triode Relationship |
|
|
66 |
(2) |
|
|
68 |
(1) |
|
|
69 |
(1) |
|
|
69 |
(4) |
|
Chapter 2 Processing and Layout |
|
|
73 |
(44) |
|
|
73 |
(13) |
|
|
73 |
(1) |
|
2.1.2 Photolithography and Well Definition |
|
|
74 |
(2) |
|
2.1.3 Diffusion and Ion Implantation |
|
|
76 |
(2) |
|
2.1.4 Chemical Vapor Deposition and Defining the Active Regions |
|
|
78 |
(1) |
|
2.1.5 Transistor Isolation |
|
|
78 |
(3) |
|
2.1.6 Gate-Oxide and Threshold-Voltage Adjustments |
|
|
81 |
(1) |
|
2.1.7 Polysilicon Gate Formation |
|
|
82 |
(1) |
|
2.1.8 Implanting the Junctions, Depositing SiO2, and Opening Contact Holes |
|
|
82 |
(2) |
|
2.1.9 Annealing, Depositing and Patterning Metal, and Overglass Deposition |
|
|
84 |
(1) |
|
2.1.10 Additional Processing Steps |
|
|
84 |
(2) |
|
2.2 CMOS Layout and Design Rules |
|
|
86 |
(10) |
|
|
86 |
(8) |
|
2.2.2 Planarity and Fill Requirements |
|
|
94 |
(1) |
|
|
94 |
(1) |
|
|
95 |
(1) |
|
2.3 Variability and Mismatch |
|
|
96 |
(7) |
|
2.3.1 Systematic Variations Including Proximity Effects |
|
|
96 |
(2) |
|
|
98 |
(1) |
|
2.3.3 Random Variations and Mismatch |
|
|
99 |
(4) |
|
2.4 Analog Layout Considerations |
|
|
103 |
(10) |
|
|
103 |
(1) |
|
|
104 |
(3) |
|
|
107 |
(2) |
|
2.4.4 Noise Considerations |
|
|
109 |
(4) |
|
|
113 |
(1) |
|
|
114 |
(1) |
|
|
114 |
(3) |
|
Chapter 3 Basic Current Mirrors and Single-Stage Amplifiers |
|
|
117 |
(27) |
|
3.1 Simple CMOS Current Mirror |
|
|
118 |
(2) |
|
3.2 Common-Source Amplifier |
|
|
120 |
(2) |
|
3.3 Source-Follower or Common-Drain Amplifier |
|
|
122 |
(2) |
|
3.4 Common-Gate Amplifier |
|
|
124 |
(3) |
|
3.5 Source-Degenerated Current Mirrors |
|
|
127 |
(2) |
|
3.6 Cascode Current Mirrors |
|
|
129 |
(2) |
|
|
131 |
(4) |
|
3.8 MOS Differential Pair and Gain Stage |
|
|
135 |
(3) |
|
|
138 |
(1) |
|
|
139 |
(1) |
|
|
139 |
(5) |
|
Chapter 4 Frequency Response of Electronic Circuits |
|
|
144 |
(60) |
|
4.1 Frequency Response of Linear Systems |
|
|
144 |
(21) |
|
4.1.1 Magnitude and Phase Response |
|
|
145 |
(2) |
|
4.1.2 First-Order Circuits |
|
|
147 |
(7) |
|
4.1.3 Second-Order Low-Pass Transfer Functions with Real Poles |
|
|
154 |
(3) |
|
|
157 |
(6) |
|
4.1.5 Second-Order Low-Pass Transfer Functions with Complex Poles |
|
|
163 |
(2) |
|
4.2 Frequency Response of Elementary Transistor Circuits |
|
|
165 |
(16) |
|
4.2.1 High-Frequency MOS Small-Signal Model |
|
|
165 |
(1) |
|
4.2.2 Common-Source Amplifier |
|
|
166 |
(3) |
|
4.2.3 Miller Theorem and Miller Effect |
|
|
169 |
(4) |
|
4.2.4 Zero-Value Time-Constant Analysis |
|
|
173 |
(3) |
|
4.2.5 Common-Source Design Examples |
|
|
176 |
(3) |
|
4.2.6 Common-Gate Amplifier |
|
|
179 |
(2) |
|
|
181 |
(6) |
|
4.4 Source-Follower Amplifier |
|
|
187 |
(6) |
|
|
193 |
(4) |
|
4.5.1 High-Frequency T-Model |
|
|
193 |
(1) |
|
4.5.2 Symmetric Differential Amplifier |
|
|
194 |
(1) |
|
4.5.3 Single-Ended Differential Amplifier |
|
|
195 |
(1) |
|
4.5.4 Differential Pair with Active Load |
|
|
196 |
(1) |
|
|
197 |
(1) |
|
|
198 |
(1) |
|
|
199 |
(5) |
|
Chapter 5 Feedback Amplifiers |
|
|
204 |
(38) |
|
5.1 Ideal Model of Negative Feedback |
|
|
204 |
(4) |
|
|
204 |
(1) |
|
|
205 |
(2) |
|
|
207 |
(1) |
|
|
207 |
(1) |
|
|
208 |
(1) |
|
5.2 Dynamic Response of Feedback Amplifiers |
|
|
208 |
(5) |
|
|
209 |
(2) |
|
|
211 |
(2) |
|
5.3 First- and Second-Order Feedback Systems |
|
|
213 |
(7) |
|
5.3.1 First-Order Feedback Systems |
|
|
213 |
(4) |
|
5.3.2 Second-Order Feedback Systems |
|
|
217 |
(3) |
|
5.3.3 Higher-Order Feedback Systems |
|
|
220 |
(1) |
|
5.4 Common Feedback Amplifiers |
|
|
220 |
(15) |
|
5.4.1 Obtaining the Loop Gain, L(s) |
|
|
222 |
(4) |
|
5.4.2 Non-Inverting Amplifier |
|
|
226 |
(5) |
|
5.4.3 Transimpedance (Inverting) Amplifiers |
|
|
231 |
(4) |
|
5.5 Summary of Key Points |
|
|
235 |
(1) |
|
|
235 |
(1) |
|
|
236 |
(6) |
|
Chapter 6 Basic Opamp Design and Compensation |
|
|
242 |
(60) |
|
|
242 |
(12) |
|
|
243 |
(2) |
|
|
245 |
(4) |
|
|
249 |
(3) |
|
6.1.4 n-Channel or p-Channel Input Stage |
|
|
252 |
(1) |
|
6.1.5 Systematic Offset Voltage |
|
|
252 |
(2) |
|
|
254 |
(7) |
|
6.2.1 Dominant-Pole Compensation and Lead Compensation |
|
|
254 |
(1) |
|
6.2.2 Compensating the Two-Stage Opamp |
|
|
255 |
(4) |
|
6.2.3 Making Compensation Independent of Process and Temperature |
|
|
259 |
(2) |
|
6.3 Advanced Current Mirrors |
|
|
261 |
(7) |
|
6.3.1 Wide-Swing Current Mirrors |
|
|
261 |
(2) |
|
6.3.2 Enhanced Output-Impedance Current Mirrors and Gain Boosting |
|
|
263 |
(3) |
|
6.3.3 Wide-Swing Current Mirror with Enhanced Output Impedance |
|
|
266 |
(1) |
|
6.3.4 Current-Mirror Symbol |
|
|
267 |
(1) |
|
|
268 |
(7) |
|
6.4.1 Small-Signal Analysis |
|
|
270 |
(2) |
|
|
272 |
(3) |
|
|
275 |
(4) |
|
6.6 Linear Settling Time Revisited |
|
|
279 |
(2) |
|
6.7 Fully Differential Opamps |
|
|
281 |
(7) |
|
6.7.1 Fully Differential Folded-Cascode Opamp |
|
|
283 |
(1) |
|
6.7.2 Alternative Fully Differential Opamps |
|
|
284 |
(2) |
|
6.7.3 Low Supply Voltage Opamps |
|
|
286 |
(2) |
|
6.8 Common-Mode Feedback Circuits |
|
|
288 |
(4) |
|
6.9 Summary of Key Points |
|
|
292 |
(1) |
|
|
293 |
(1) |
|
|
294 |
(8) |
|
Chapter 7 Biasing, References, and Regulators |
|
|
302 |
(29) |
|
7.1 Analog Integrated Circuit Biasing |
|
|
302 |
(5) |
|
|
303 |
(2) |
|
|
305 |
(1) |
|
|
306 |
(1) |
|
7.2 Establishing Constant Transconductance |
|
|
307 |
(3) |
|
7.2.1 Basic Constant-Transconductance Circuit |
|
|
307 |
(2) |
|
7.2.2 Improved Constant-Transconductance Circuits |
|
|
309 |
(1) |
|
7.3 Establishing Constant Voltages and Currents |
|
|
310 |
(11) |
|
7.3.1 Bandgap Voltage Reference Basics |
|
|
310 |
(4) |
|
7.3.2 Circuits for Bandgap References |
|
|
314 |
(5) |
|
7.3.3 Low-Voltage Bandgap Reference |
|
|
319 |
(1) |
|
|
320 |
(1) |
|
|
321 |
(6) |
|
7.4.1 Regulator Specifications |
|
|
322 |
(1) |
|
|
322 |
(2) |
|
7.4.3 Low Dropout Regulators |
|
|
324 |
(3) |
|
7.5 Summary of Key Points |
|
|
327 |
(1) |
|
|
327 |
(1) |
|
|
328 |
(3) |
|
Chapter 8 Bipolar Devices and Circuits |
|
|
331 |
(32) |
|
8.1 Bipolar-Junction Transistors |
|
|
331 |
(13) |
|
|
331 |
(10) |
|
8.1.2 Analog Figures of Merit |
|
|
341 |
(3) |
|
8.2 Bipolar Device Model Summary |
|
|
344 |
(1) |
|
|
345 |
(1) |
|
8.4 Bipolar and BICMOS Processing |
|
|
346 |
(3) |
|
|
346 |
(1) |
|
8.4.2 Modern SiGe BiCMOS HBT Processing |
|
|
347 |
(1) |
|
8.4.3 Mismatch in Bipolar Devices |
|
|
348 |
(1) |
|
8.5 Bipolar Current Mirrors and Gain Stages |
|
|
349 |
(7) |
|
|
349 |
(1) |
|
|
350 |
(3) |
|
8.5.3 Bipolar Differential Pair |
|
|
353 |
(3) |
|
|
356 |
(3) |
|
8.6.1 Bipolar Transistor Exponential Relationship |
|
|
356 |
(3) |
|
8.6.2 Base Charge Storage of an Active BJT |
|
|
359 |
(1) |
|
8.7 Summary of Key Points |
|
|
359 |
(1) |
|
|
360 |
(1) |
|
|
360 |
(3) |
|
Chapter 9 Noise and Linearity Analysis and Modelling |
|
|
363 |
(50) |
|
|
363 |
(4) |
|
9.1.1 Root Mean Square (rms) Value |
|
|
364 |
(1) |
|
|
365 |
(1) |
|
|
365 |
(1) |
|
|
366 |
(1) |
|
9.2 Frequency-Domain Analysis |
|
|
367 |
(10) |
|
9.2.1 Noise Spectral Density |
|
|
367 |
(2) |
|
|
369 |
(1) |
|
9.2.3 1/f, or Flicker, Noise |
|
|
370 |
(1) |
|
|
371 |
(2) |
|
|
373 |
(2) |
|
9.2.6 Piecewise Integration of Noise |
|
|
375 |
(2) |
|
9.2.7 1/f Noise Tangent Principle |
|
|
377 |
(1) |
|
9.3 Noise Models for Circuit Elements |
|
|
377 |
(10) |
|
|
378 |
(1) |
|
|
378 |
(2) |
|
9.3.3 Bipolar Transistors |
|
|
380 |
(1) |
|
|
380 |
(2) |
|
|
382 |
(1) |
|
9.3.6 Capacitors and Inductors |
|
|
382 |
(2) |
|
9.3.7 Sampled Signal Noise |
|
|
384 |
(1) |
|
9.3.8 Input-Referred Noise |
|
|
384 |
(3) |
|
9.4 Noise Analysis Examples |
|
|
387 |
(10) |
|
|
387 |
(3) |
|
9.4.2 Bipolar Common-Emitter Example |
|
|
390 |
(2) |
|
9.4.3 CMOS Differential Pair Example |
|
|
392 |
(3) |
|
9.4.4 Fiber-Optic Transimpedance Amplifier Example |
|
|
395 |
(2) |
|
9.5 Dynamic Range Performance |
|
|
397 |
(8) |
|
9.5.1 Total Harmonic Distortion (THD) |
|
|
398 |
(2) |
|
9.5.2 Third-Order Intercept Point (IP3) |
|
|
400 |
(2) |
|
9.5.3 Spurious-Free Dynamic Range (SFDR) |
|
|
402 |
(2) |
|
9.5.4 Signal-to-Noise and Distortion Ratio (SNDR) |
|
|
404 |
(1) |
|
|
405 |
(1) |
|
|
406 |
(1) |
|
|
406 |
(7) |
|
|
413 |
(31) |
|
10.1 Comparator Specifications |
|
|
413 |
(2) |
|
10.1.1 Input Offset and Noise |
|
|
413 |
(1) |
|
|
414 |
(1) |
|
10.2 Using an Opamp for a Comparator |
|
|
415 |
(3) |
|
10.2.1 Input-Offset Voltage Errors |
|
|
417 |
(1) |
|
10.3 Charge-Injection Errors |
|
|
418 |
(8) |
|
10.3.1 Making Charge-Injection Signal Independent |
|
|
421 |
(1) |
|
10.3.2 Minimizing Errors Due to Charge-Injection |
|
|
421 |
(3) |
|
10.3.3 Speed of Multi-Stage Comparators |
|
|
424 |
(2) |
|
|
426 |
(5) |
|
10.4.1 Latch-Mode Time Constant |
|
|
427 |
(3) |
|
|
430 |
(1) |
|
10.5 Examples of CMOS and BiCMOS Comparators |
|
|
431 |
(6) |
|
10.5.1 Input-Transistor Charge Trapping |
|
|
435 |
(2) |
|
10.6 Examples of Bipolar Comparators |
|
|
437 |
(2) |
|
|
439 |
(1) |
|
|
440 |
(1) |
|
|
440 |
(4) |
|
Chapter 11 Sample-and-Hold and Translinear Circuits |
|
|
444 |
(25) |
|
11.1 Performance of Sample-and-Hold Circuits |
|
|
444 |
(2) |
|
11.1.1 Testing Sample and Holds |
|
|
445 |
(1) |
|
11.2 MOS Sample-and-Hold Basics |
|
|
446 |
(6) |
|
11.3 Examples of CMOS S/H Circuits |
|
|
452 |
(4) |
|
11.4 Bipolar and BiCMOS Sample-and-Holds |
|
|
456 |
(4) |
|
11.5 Translinear Gain Cell |
|
|
460 |
(2) |
|
11.6 Translinear Multiplier |
|
|
462 |
(2) |
|
|
464 |
(1) |
|
|
465 |
(1) |
|
|
466 |
(3) |
|
Chapter 12 Continuous-Time Filters |
|
|
469 |
(68) |
|
12.1 Introduction to Continuous-Time Filters |
|
|
469 |
(2) |
|
12.1.1 First-Order Filters |
|
|
470 |
(1) |
|
12.1.2 Second-Order Filters |
|
|
470 |
(1) |
|
12.2 Introduction to Gm-C Filters |
|
|
471 |
(8) |
|
12.2.1 Integrators and Summers |
|
|
472 |
(2) |
|
12.2.2 Fully Differential Integrators |
|
|
474 |
(1) |
|
12.2.3 First-Order Filter |
|
|
475 |
(2) |
|
|
477 |
(2) |
|
12.3 Transconductors Using Fixed Resistors |
|
|
479 |
(5) |
|
12.4 CMOS Transconductors Using Triode Transistors |
|
|
484 |
(9) |
|
12.4.1 Transconductors Using a Fixed-Bias Triode Transistor |
|
|
484 |
(2) |
|
12.4.2 Transconductors Using Varying Bias-Triode Transistors |
|
|
486 |
(5) |
|
12.4.3 Transconductors Using Constant Drain-Source Voltages |
|
|
491 |
(2) |
|
12.5 CMOS Transconductors Using Active Transistors |
|
|
493 |
(7) |
|
|
493 |
(1) |
|
12.5.2 Constant Sum of Gate-Source Voltages |
|
|
494 |
(1) |
|
12.5.3 Source-Connected Differential Pair |
|
|
495 |
(1) |
|
|
495 |
(2) |
|
12.5.5 Differential-Pair with Floating Voltage Sources |
|
|
497 |
(2) |
|
12.5.6 Bias-Offset Cross-Coupled Differential Pairs |
|
|
499 |
(1) |
|
12.6 Bipolar Transconductors |
|
|
500 |
(6) |
|
12.6.1 Gain-Cell Transconductors |
|
|
500 |
(1) |
|
12.6.2 Transconductors Using Multiple Differential Pairs |
|
|
501 |
(5) |
|
12.7 BiCMOS Transconductors |
|
|
506 |
(3) |
|
12.7.1 Tunable MOS in Triode |
|
|
506 |
(1) |
|
12.7.2 Fixed-Resistor Transconductor with a Translinear Multiplier |
|
|
507 |
(1) |
|
12.7.3 Fixed Active MOS Transconductor with a Translinear Multiplier |
|
|
508 |
(1) |
|
12.8 Active RC and MOSFET-C Filters |
|
|
509 |
(7) |
|
|
510 |
(2) |
|
12.8.2 MOSFET-C Two-Transistor Integrators |
|
|
512 |
(3) |
|
12.8.3 Four-Transistor Integrators |
|
|
515 |
(6) |
|
12.8.4 R-MOSFET-C Filters |
|
|
521 |
|
|
|
516 |
(9) |
|
|
517 |
(2) |
|
12.9.2 Constant Transconductance |
|
|
519 |
(1) |
|
|
520 |
(2) |
|
|
522 |
(1) |
|
12.9.5 Tuning Methods Based on Adaptive Filtering |
|
|
523 |
(2) |
|
12.10 Introduction to Complex Filters |
|
|
525 |
(6) |
|
12.10.1 Complex Signal Processing |
|
|
525 |
(1) |
|
12.10.2 Complex Operations |
|
|
526 |
(1) |
|
|
527 |
(1) |
|
12.10.4 Frequency-Translated Analog Filters |
|
|
528 |
(3) |
|
|
531 |
(1) |
|
|
532 |
(2) |
|
|
534 |
(3) |
|
Chapter 13 Discrete-Time Signals |
|
|
537 |
(20) |
|
13.1 Overview of Some Signal Spectra |
|
|
537 |
(1) |
|
13.2 Laplace Transforms of Discrete-Time Signals |
|
|
537 |
(4) |
|
13.2.1 Spectra of Discrete-Time Signals |
|
|
540 |
(1) |
|
|
541 |
(2) |
|
13.4 Downsampling and Upsampling |
|
|
543 |
(2) |
|
13.5 Discrete-Time Filters |
|
|
545 |
(7) |
|
13.5.1 Frequency Response of Discrete-Time Filters |
|
|
545 |
(3) |
|
13.5.2 Stability of Discrete-Time Filters |
|
|
548 |
(2) |
|
13.5.3 IIR and FIR Filters |
|
|
550 |
(1) |
|
13.5.4 Bilinear Transform |
|
|
550 |
(2) |
|
13.6 Sample-and-Hold Response |
|
|
552 |
(2) |
|
|
554 |
(1) |
|
|
555 |
(1) |
|
|
555 |
(2) |
|
Chapter 14 Switched-Capacitor Circuits |
|
|
557 |
(49) |
|
14.1 Basic Building Blocks |
|
|
557 |
(3) |
|
|
557 |
(1) |
|
|
558 |
(1) |
|
|
558 |
(1) |
|
14.1.4 Nonoverlapping Clocks |
|
|
559 |
(1) |
|
14.2 Basic Operation and Analysis |
|
|
560 |
(10) |
|
14.2.1 Resistor Equivalence of a Switched Capacitor |
|
|
560 |
(1) |
|
14.2.2 Parasitic-Sensitive Integrator |
|
|
560 |
(5) |
|
14.2.3 Parasitic-Insensitive Integrators |
|
|
565 |
(4) |
|
14.2.4 Signal-Flow-Graph Analysis |
|
|
569 |
(1) |
|
14.3 Noise in Switched-Capacitor Circuits |
|
|
570 |
(2) |
|
|
572 |
(5) |
|
|
575 |
(1) |
|
14.4.2 Fully Differential Filters |
|
|
575 |
(2) |
|
|
577 |
(8) |
|
14.5.1 Low-Q Biquad Filter |
|
|
577 |
(1) |
|
14.5.2 High-Q Biquad Filter |
|
|
577 |
(8) |
|
|
585 |
(3) |
|
14.7 Switched-Capacitor Gain Circuits |
|
|
588 |
(5) |
|
14.7.1 Parallel Resistor-Capacitor Circuit |
|
|
588 |
(1) |
|
14.7.2 Resettable Gain Circuit |
|
|
588 |
(3) |
|
14.7.3 Capacitive-Reset Gain Circuit |
|
|
591 |
(2) |
|
14.8 Correlated Double-Sampling Techniques |
|
|
593 |
(1) |
|
14.9 Other Switched-Capacitor Circuits |
|
|
594 |
(6) |
|
14.9.1 Amplitude Modulator |
|
|
594 |
(1) |
|
14.9.2 Full-Wave Rectifier |
|
|
595 |
(1) |
|
|
596 |
(1) |
|
14.9.4 Voltage-Controlled Oscillator |
|
|
596 |
(2) |
|
14.9.5 Sinusoidal Oscillator |
|
|
598 |
(2) |
|
|
600 |
(1) |
|
|
601 |
(1) |
|
|
602 |
(4) |
|
Chapter 15 Data Converter Fundamentals |
|
|
606 |
(17) |
|
|
606 |
(2) |
|
|
608 |
(1) |
|
|
609 |
(3) |
|
15.3.1 Deterministic Approach |
|
|
609 |
(1) |
|
15.3.2 Stochastic Approach |
|
|
610 |
(2) |
|
|
612 |
(2) |
|
15.5 Performance Limitations |
|
|
614 |
(6) |
|
|
614 |
(1) |
|
15.5.2 Offset and Gain Error |
|
|
615 |
(1) |
|
15.5.3 Accuracy and Linearity |
|
|
615 |
(5) |
|
|
620 |
(1) |
|
|
620 |
(1) |
|
|
620 |
(3) |
|
Chapter 16 Nyquist-Rate D/A Converters |
|
|
623 |
(23) |
|
16.1 Decoder-Based Converters |
|
|
623 |
(5) |
|
16.1.1 Resistor String Converters |
|
|
623 |
(2) |
|
16.1.2 Folded Resistor-String Converters |
|
|
625 |
(1) |
|
16.1.3 Multiple Resistor-String Converters |
|
|
625 |
(2) |
|
|
627 |
(1) |
|
16.2 Binary-Scaled Converters |
|
|
628 |
(6) |
|
16.2.1 Binary-Weighted Resistor Converters |
|
|
629 |
(1) |
|
16.2.2 Reduced-Resistance-Ratio Ladders |
|
|
630 |
(1) |
|
16.2.3 R-2R-Based Converters |
|
|
630 |
(2) |
|
16.2.4 Charge-Redistribution Switched-Capacitor Converters |
|
|
632 |
(1) |
|
16.2.5 Current-Mode Converters |
|
|
633 |
(1) |
|
|
633 |
(1) |
|
16.3 Thermometer-Code Converters |
|
|
634 |
(6) |
|
16.3.1 Thermometer-Code Current-Mode D/A Converters |
|
|
636 |
(1) |
|
16.3.2 Single-Supply Positive-Output Converters |
|
|
637 |
(1) |
|
16.3.3 Dynamically Matched Current Sources |
|
|
638 |
(2) |
|
|
640 |
(2) |
|
16.4.1 Resistor-Capacitor Hybrid Converters |
|
|
640 |
(1) |
|
16.4.2 Segmented Converters |
|
|
640 |
(2) |
|
|
642 |
(1) |
|
|
643 |
(1) |
|
|
643 |
(3) |
|
Chapter 17 Nyquist-Rate A/D Converters |
|
|
646 |
(50) |
|
17.1 Integrating Converters |
|
|
646 |
(4) |
|
17.2 Successive-Approximation Converters |
|
|
650 |
(12) |
|
17.2.1 DAC-Based Successive Approximation |
|
|
652 |
(1) |
|
17.2.2 Charge-Redistribution A/D |
|
|
653 |
(5) |
|
17.2.3 Resistor-Capacitor Hybrid |
|
|
658 |
(1) |
|
17.2.4 Speed Estimate for Charge-Redistribution Converters |
|
|
658 |
(1) |
|
17.2.5 Error Correction in Successive-Approximation Converters |
|
|
659 |
(3) |
|
17.2.6 Multi-Bit Successive-Approximation |
|
|
662 |
(1) |
|
17.3 Algorithmic (or Cyclic) A/D Converter |
|
|
662 |
(3) |
|
17.3.1 Ratio-Independent Algorithmic Converter |
|
|
662 |
(3) |
|
17.4 Pipelined A/D Converters |
|
|
665 |
(8) |
|
17.4.1 One-Bit-Per-Stage Pipelined Converter |
|
|
667 |
(2) |
|
17.4.2 1.5 Bit Per Stage Pipelined Converter |
|
|
669 |
(3) |
|
17.4.3 Pipelined Converter Circuits |
|
|
672 |
(1) |
|
17.4.4 Generalized k-Bit-Per-Stage Pipelined Converters |
|
|
673 |
(1) |
|
|
673 |
(4) |
|
17.5.1 Issues in Designing Flash A/D Converters |
|
|
675 |
(2) |
|
17.6 Two-Step A/D Converters |
|
|
677 |
(3) |
|
17.6.1 Two-Step Converter with Digital Error Correction |
|
|
679 |
(1) |
|
17.7 Interpolating A/D Converters |
|
|
680 |
(3) |
|
17.8 Folding A/D Converters |
|
|
683 |
(4) |
|
17.9 Time-Interleaved A/D Converters |
|
|
687 |
(3) |
|
|
690 |
(1) |
|
|
691 |
(1) |
|
|
692 |
(4) |
|
Chapter 18 Oversampling Converters |
|
|
696 |
(42) |
|
18.1 Oversampling without Noise Shaping |
|
|
696 |
(6) |
|
18.1.1 Quantization Noise Modelling |
|
|
697 |
(1) |
|
18.1.2 White Noise Assumption |
|
|
697 |
(2) |
|
18.1.3 Oversampling Advantage |
|
|
699 |
(2) |
|
18.1.4 The Advantage of 1-Bit D/A Converters |
|
|
701 |
(1) |
|
18.2 Oversampling with Noise Shaping |
|
|
702 |
(9) |
|
18.2.1 Noise-Shaped Delta-Sigma Modulator |
|
|
703 |
(1) |
|
18.2.2 First-Order Noise Shaping |
|
|
704 |
(2) |
|
18.2.3 Switched-Capacitor Realization of a First-Order A/D Converter |
|
|
706 |
(1) |
|
18.2.4 Second-Order Noise Shaping |
|
|
706 |
(2) |
|
18.2.5 Noise Transfer-Function Curves |
|
|
708 |
(1) |
|
18.2.6 Quantization Noise Power of 1-Bit Modulators |
|
|
709 |
(1) |
|
18.2.7 Error-Feedback Structure |
|
|
709 |
(2) |
|
18.3 System Architectures |
|
|
711 |
(3) |
|
18.3.1 System Architecture of Delta-Sigma A/D Converters |
|
|
711 |
(2) |
|
18.3.2 System Architecture of Delta-Sigma D/A Converters |
|
|
713 |
(1) |
|
18.4 Digital Decimation Filters |
|
|
714 |
(4) |
|
|
715 |
(2) |
|
|
717 |
(1) |
|
18.5 Higher-Order Modulators |
|
|
718 |
(3) |
|
18.5.1 Interpolative Architecture |
|
|
718 |
(1) |
|
18.5.2 Multi-Stage Noise Shaping (MASH) Architecture |
|
|
719 |
(2) |
|
18.6 Bandpass Oversampling Converters |
|
|
721 |
(1) |
|
18.7 Practical Considerations |
|
|
722 |
(5) |
|
|
722 |
(1) |
|
18.7.2 Linearity of Two-Level Converters |
|
|
723 |
(2) |
|
|
725 |
(1) |
|
|
726 |
(1) |
|
|
726 |
(1) |
|
18.8 Multi-Bit Oversampling Converters |
|
|
727 |
(3) |
|
18.8.1 Dynamic Element Matching |
|
|
727 |
(1) |
|
18.8.2 Dynamically Matched Current Source D/S Converters |
|
|
728 |
(1) |
|
18.8.3 Digital Calibration A/D Converter |
|
|
728 |
(1) |
|
18.8.4 A/D with Both Multi-Bit and Single-Bit Feedback |
|
|
729 |
(1) |
|
18.9 Third-Order A/D Design Example |
|
|
730 |
(2) |
|
|
732 |
(2) |
|
|
734 |
(1) |
|
|
735 |
(3) |
|
Chapter 19 Phase-Locked Loops |
|
|
738 |
(49) |
|
19.1 Basic Phase-Locked Loop Architecture |
|
|
738 |
(10) |
|
19.1.1 Voltage Controlled Oscillator |
|
|
739 |
(1) |
|
|
740 |
(1) |
|
|
741 |
(5) |
|
|
746 |
(1) |
|
|
747 |
(1) |
|
19.2 Linearized Small-Signal Analysis |
|
|
748 |
(8) |
|
19.2.1 Second-Order PLL Model |
|
|
749 |
(2) |
|
19.2.2 Limitations of the Second-Order Small-Signal Model |
|
|
751 |
(3) |
|
19.2.3 PLL Design Example |
|
|
754 |
(2) |
|
19.3 Jitter and Phase Noise |
|
|
756 |
(9) |
|
|
760 |
(1) |
|
|
761 |
(1) |
|
19.3.3 Adjacent Period Jitter |
|
|
761 |
(1) |
|
19.3.4 Other Spectral Representations of Jitter |
|
|
762 |
(2) |
|
19.3.5 Probability Density Function of Jitter |
|
|
764 |
(1) |
|
19.4 Electronic Oscillators |
|
|
765 |
(12) |
|
|
766 |
(5) |
|
|
771 |
(1) |
|
19.4.3 Phase Noise of Oscillators |
|
|
772 |
(5) |
|
19.5 Jitter and Phase Noise in PLLS |
|
|
777 |
(4) |
|
19.5.1 Input Phase Noise and Divider Phase Noise |
|
|
777 |
(1) |
|
|
778 |
(1) |
|
|
779 |
(2) |
|
|
781 |
(1) |
|
|
782 |
(1) |
|
|
782 |
(5) |
Index |
|
787 |
|