Muutke küpsiste eelistusi

Analog Integrated Circuit Design 2nd Revised edition [Kõva köide]

(University of Toronto, Canada), (University of Toronto, Canada), (University of Toronto, Canada)
  • Formaat: Hardback, 816 pages, kõrgus x laius x paksus: 239x198x33 mm, kaal: 1406 g
  • Ilmumisaeg: 18-Nov-2011
  • Kirjastus: John Wiley & Sons Ltd
  • ISBN-10: 0470770104
  • ISBN-13: 9780470770108
Teised raamatud teemal:
  • Formaat: Hardback, 816 pages, kõrgus x laius x paksus: 239x198x33 mm, kaal: 1406 g
  • Ilmumisaeg: 18-Nov-2011
  • Kirjastus: John Wiley & Sons Ltd
  • ISBN-10: 0470770104
  • ISBN-13: 9780470770108
Teised raamatud teemal:
The 2nd Edition of Analog Integrated Circuit Design focuses on more coverage about several types of circuits that have increased in importance in the past decade. Furthermore, the text is enhanced with material on CMOS IC device modeling, updated processing layout and expanded coverage to reflect technical innovations. CMOS devices and circuits have more influence in this edition as well as a reduced amount of text on BiCMOS and bipolar information. New chapters include topics on frequency response of analog ICs and basic theory of feedback amplifiers.  

 

  Chapter 1 Integrated-Circuit Devices and Modelling
  1 (72)
  1.1 Semiconductors and pn Junctions
  1 (13)
  1.1.1 Diodes
  2 (2)
  1.1.2 Reverse-Biased Diodes
  4 (3)
  1.1.3 Graded Junctions
  7 (2)
  1.1.4 Large-Signal Junction Capacitance
  9 (1)
  1.1.5 Forward-Biased Junctions
  10 (1)
  1.1.6 Junction Capacitance of Forward-Biased Diode
  11 (1)
  1.1.7 Small-Signal Model of a Forward-Biased Diode
  12 (1)
  1.1.8 Schottky Diodes
  13 (1)
  1.2 MOS Transistors
  14 (24)
  1.2.1 Symbols for MOS Transistors
  15 (1)
  1.2.2 Basic Operation
  16 (5)
  1.2.3 Large-Signal Modelling
  21 (3)
  1.2.4 Body Effect
  24 (1)
  1.2.5 p-Channel Transistors
  24 (1)
  1.2.6 Low-Frequency Small-Signal Modelling in the Active Region
  25 (5)
  1.2.7 High-Frequency Small-Signal Modelling in the Active Region
  30 (3)
  1.2.8 Small-Signal Modelling in the Triode and Cutoff Regions
  33 (3)
  1.2.9 Analog Figures of Merit and Trade-offs
  36 (2)
  1.3 Device Model Summary
  38 (4)
  1.3.1 Constants
  38 (1)
  1.3.2 Diode Equations
  39 (1)
  1.3.3 MOS Transistor Equations
  40 (2)
  1.4 Advanced MOS Modelling
  42 (8)
  1.4.1 Subthreshold Operation
  42 (2)
  1.4.2 Mobility Degradation
  44 (3)
  1.4.3 Summary of Subthreshold and Mobility Degradation Equations
  47 (1)
  1.4.4 Parasitic Resistances
  47 (1)
  1.4.5 Short-Channel Effects
  48 (1)
  1.4.6 Leakage Currents
  49 (1)
  1.5 SPICE Modelling Parameters
  50 (4)
  1.5.1 Diode Model
  50 (1)
  1.5.2 MOS Transistors
  51 (1)
  1.5.3 Advanced SPICE Models of MOS Transistors
  51 (3)
  1.6 Passive Devices
  54 (6)
  1.6.1 Resistors
  54 (4)
  1.6.2 Capacitors
  58 (2)
  1.7 Appendix
  60 (8)
  1.7.1 Diode Exponential Relationship
  60 (2)
  1.7.2 Diode-Diffusion Capacitance
  62 (2)
  1.7.3 MOS Threshold Voltage and the Body Effect
  64 (2)
  1.7.4 MOS Triode Relationship
  66 (2)
  1.8 Key Points
  68 (1)
  1.9 References
  69 (1)
  1.10 Problems
  69 (4)
  Chapter 2 Processing and Layout
  73 (44)
  2.1 CMOS Processing
  73 (13)
  2.1.1 The Silicon Wafer
  73 (1)
  2.1.2 Photolithography and Well Definition
  74 (2)
  2.1.3 Diffusion and Ion Implantation
  76 (2)
  2.1.4 Chemical Vapor Deposition and Defining the Active Regions
  78 (1)
  2.1.5 Transistor Isolation
  78 (3)
  2.1.6 Gate-Oxide and Threshold-Voltage Adjustments
  81 (1)
  2.1.7 Polysilicon Gate Formation
  82 (1)
  2.1.8 Implanting the Junctions, Depositing SiO2, and Opening Contact Holes
  82 (2)
  2.1.9 Annealing, Depositing and Patterning Metal, and Overglass Deposition
  84 (1)
  2.1.10 Additional Processing Steps
  84 (2)
  2.2 CMOS Layout and Design Rules
  86 (10)
  2.2.1 Spacing Rules
  86 (8)
  2.2.2 Planarity and Fill Requirements
  94 (1)
  2.2.3 Antenna Rules
  94 (1)
  2.2.4 Latch-Up
  95 (1)
  2.3 Variability and Mismatch
  96 (7)
  2.3.1 Systematic Variations Including Proximity Effects
  96 (2)
  2.3.2 Process Variations
  98 (1)
  2.3.3 Random Variations and Mismatch
  99 (4)
  2.4 Analog Layout Considerations
  103 (10)
  2.4.1 Transistor Layouts
  103 (1)
  2.4.2 Capacitor Matching
  104 (3)
  2.4.3 Resistor Layout
  107 (2)
  2.4.4 Noise Considerations
  109 (4)
  2.5 Key Points
  113 (1)
  2.6 References
  114 (1)
  2.7 Problems
  114 (3)
  Chapter 3 Basic Current Mirrors and Single-Stage Amplifiers
  117 (27)
  3.1 Simple CMOS Current Mirror
  118 (2)
  3.2 Common-Source Amplifier
  120 (2)
  3.3 Source-Follower or Common-Drain Amplifier
  122 (2)
  3.4 Common-Gate Amplifier
  124 (3)
  3.5 Source-Degenerated Current Mirrors
  127 (2)
  3.6 Cascode Current Mirrors
  129 (2)
  3.7 Cascode Gain Stage
  131 (4)
  3.8 MOS Differential Pair and Gain Stage
  135 (3)
  3.9 Key Points
  138 (1)
  3.10 References
  139 (1)
  3.11 Problems
  139 (5)
  Chapter 4 Frequency Response of Electronic Circuits
  144 (60)
  4.1 Frequency Response of Linear Systems
  144 (21)
  4.1.1 Magnitude and Phase Response
  145 (2)
  4.1.2 First-Order Circuits
  147 (7)
  4.1.3 Second-Order Low-Pass Transfer Functions with Real Poles
  154 (3)
  4.1.4 Bode Plots
  157 (6)
  4.1.5 Second-Order Low-Pass Transfer Functions with Complex Poles
  163 (2)
  4.2 Frequency Response of Elementary Transistor Circuits
  165 (16)
  4.2.1 High-Frequency MOS Small-Signal Model
  165 (1)
  4.2.2 Common-Source Amplifier
  166 (3)
  4.2.3 Miller Theorem and Miller Effect
  169 (4)
  4.2.4 Zero-Value Time-Constant Analysis
  173 (3)
  4.2.5 Common-Source Design Examples
  176 (3)
  4.2.6 Common-Gate Amplifier
  179 (2)
  4.3 Cascode Gain Stage
  181 (6)
  4.4 Source-Follower Amplifier
  187 (6)
  4.5 Differential Pair
  193 (4)
  4.5.1 High-Frequency T-Model
  193 (1)
  4.5.2 Symmetric Differential Amplifier
  194 (1)
  4.5.3 Single-Ended Differential Amplifier
  195 (1)
  4.5.4 Differential Pair with Active Load
  196 (1)
  4.6 Key Points
  197 (1)
  4.7 References
  198 (1)
  4.8 Problems
  199 (5)
  Chapter 5 Feedback Amplifiers
  204 (38)
  5.1 Ideal Model of Negative Feedback
  204 (4)
  5.1.1 Basic Definitions
  204 (1)
  5.1.2 Gain Sensitivity
  205 (2)
  5.1.3 Bandwidth
  207 (1)
  5.1.4 Linearity
  207 (1)
  5.1.5 Summary
  208 (1)
  5.2 Dynamic Response of Feedback Amplifiers
  208 (5)
  5.2.1 Stability Criteria
  209 (2)
  5.2.2 Phase Margin
  211 (2)
  5.3 First- and Second-Order Feedback Systems
  213 (7)
  5.3.1 First-Order Feedback Systems
  213 (4)
  5.3.2 Second-Order Feedback Systems
  217 (3)
  5.3.3 Higher-Order Feedback Systems
  220 (1)
  5.4 Common Feedback Amplifiers
  220 (15)
  5.4.1 Obtaining the Loop Gain, L(s)
  222 (4)
  5.4.2 Non-Inverting Amplifier
  226 (5)
  5.4.3 Transimpedance (Inverting) Amplifiers
  231 (4)
  5.5 Summary of Key Points
  235 (1)
  5.6 References
  235 (1)
  5.7 Problems
  236 (6)
  Chapter 6 Basic Opamp Design and Compensation
  242 (60)
  6.1 Two-Stage CMOS Opamp
  242 (12)
  6.1.1 Opamp Gain
  243 (2)
  6.1.2 Frequency Response
  245 (4)
  6.1.3 Slew Rate
  249 (3)
  6.1.4 n-Channel or p-Channel Input Stage
  252 (1)
  6.1.5 Systematic Offset Voltage
  252 (2)
  6.2 Opamp Compensation
  254 (7)
  6.2.1 Dominant-Pole Compensation and Lead Compensation
  254 (1)
  6.2.2 Compensating the Two-Stage Opamp
  255 (4)
  6.2.3 Making Compensation Independent of Process and Temperature
  259 (2)
  6.3 Advanced Current Mirrors
  261 (7)
  6.3.1 Wide-Swing Current Mirrors
  261 (2)
  6.3.2 Enhanced Output-Impedance Current Mirrors and Gain Boosting
  263 (3)
  6.3.3 Wide-Swing Current Mirror with Enhanced Output Impedance
  266 (1)
  6.3.4 Current-Mirror Symbol
  267 (1)
  6.4 Folded-Cascode Opamp
  268 (7)
  6.4.1 Small-Signal Analysis
  270 (2)
  6.4.2 Slew Rate
  272 (3)
  6.5 Current Mirror Opamp
  275 (4)
  6.6 Linear Settling Time Revisited
  279 (2)
  6.7 Fully Differential Opamps
  281 (7)
  6.7.1 Fully Differential Folded-Cascode Opamp
  283 (1)
  6.7.2 Alternative Fully Differential Opamps
  284 (2)
  6.7.3 Low Supply Voltage Opamps
  286 (2)
  6.8 Common-Mode Feedback Circuits
  288 (4)
  6.9 Summary of Key Points
  292 (1)
  6.10 References
  293 (1)
  6.11 Problems
  294 (8)
  Chapter 7 Biasing, References, and Regulators
  302 (29)
  7.1 Analog Integrated Circuit Biasing
  302 (5)
  7.1.1 Bias Circuits
  303 (2)
  7.1.2 Reference Circuits
  305 (1)
  7.1.3 Regulator Circuits
  306 (1)
  7.2 Establishing Constant Transconductance
  307 (3)
  7.2.1 Basic Constant-Transconductance Circuit
  307 (2)
  7.2.2 Improved Constant-Transconductance Circuits
  309 (1)
  7.3 Establishing Constant Voltages and Currents
  310 (11)
  7.3.1 Bandgap Voltage Reference Basics
  310 (4)
  7.3.2 Circuits for Bandgap References
  314 (5)
  7.3.3 Low-Voltage Bandgap Reference
  319 (1)
  7.3.4 Current Reference
  320 (1)
  7.4 Voltage Regulation
  321 (6)
  7.4.1 Regulator Specifications
  322 (1)
  7.4.2 Feedback Analysis
  322 (2)
  7.4.3 Low Dropout Regulators
  324 (3)
  7.5 Summary of Key Points
  327 (1)
  7.6 References
  327 (1)
  7.7 Problems
  328 (3)
  Chapter 8 Bipolar Devices and Circuits
  331 (32)
  8.1 Bipolar-Junction Transistors
  331 (13)
  8.1.1 Basic Operation
  331 (10)
  8.1.2 Analog Figures of Merit
  341 (3)
  8.2 Bipolar Device Model Summary
  344 (1)
  8.3 SPICE Modeling
  345 (1)
  8.4 Bipolar and BICMOS Processing
  346 (3)
  8.4.1 Bipolar Processing
  346 (1)
  8.4.2 Modern SiGe BiCMOS HBT Processing
  347 (1)
  8.4.3 Mismatch in Bipolar Devices
  348 (1)
  8.5 Bipolar Current Mirrors and Gain Stages
  349 (7)
  8.5.1 Current Mirrors
  349 (1)
  8.5.2 Emitter Follower
  350 (3)
  8.5.3 Bipolar Differential Pair
  353 (3)
  8.6 Appendix
  356 (3)
  8.6.1 Bipolar Transistor Exponential Relationship
  356 (3)
  8.6.2 Base Charge Storage of an Active BJT
  359 (1)
  8.7 Summary of Key Points
  359 (1)
  8.8 References
  360 (1)
  8.9 Problems
  360 (3)
  Chapter 9 Noise and Linearity Analysis and Modelling
  363 (50)
  9.1 Time-Domain Analysis
  363 (4)
  9.1.1 Root Mean Square (rms) Value
  364 (1)
  9.1.2 SNR
  365 (1)
  9.1.3 Units of dBm
  365 (1)
  9.1.4 Noise Summation
  366 (1)
  9.2 Frequency-Domain Analysis
  367 (10)
  9.2.1 Noise Spectral Density
  367 (2)
  9.2.2 White Noise
  369 (1)
  9.2.3 1/f, or Flicker, Noise
  370 (1)
  9.2.4 Filtered Noise
  371 (2)
  9.2.5 Noise Bandwidth
  373 (2)
  9.2.6 Piecewise Integration of Noise
  375 (2)
  9.2.7 1/f Noise Tangent Principle
  377 (1)
  9.3 Noise Models for Circuit Elements
  377 (10)
  9.3.1 Resistors
  378 (1)
  9.3.2 Diodes
  378 (2)
  9.3.3 Bipolar Transistors
  380 (1)
  9.3.4 MOSFETS
  380 (2)
  9.3.5 Opamps
  382 (1)
  9.3.6 Capacitors and Inductors
  382 (2)
  9.3.7 Sampled Signal Noise
  384 (1)
  9.3.8 Input-Referred Noise
  384 (3)
  9.4 Noise Analysis Examples
  387 (10)
  9.4.1 Opamp Example
  387 (3)
  9.4.2 Bipolar Common-Emitter Example
  390 (2)
  9.4.3 CMOS Differential Pair Example
  392 (3)
  9.4.4 Fiber-Optic Transimpedance Amplifier Example
  395 (2)
  9.5 Dynamic Range Performance
  397 (8)
  9.5.1 Total Harmonic Distortion (THD)
  398 (2)
  9.5.2 Third-Order Intercept Point (IP3)
  400 (2)
  9.5.3 Spurious-Free Dynamic Range (SFDR)
  402 (2)
  9.5.4 Signal-to-Noise and Distortion Ratio (SNDR)
  404 (1)
  9.6 Key Points
  405 (1)
  9.7 References
  406 (1)
  9.8 Problems
  406 (7)
  Chapter 10 Comparators
  413 (31)
  10.1 Comparator Specifications
  413 (2)
  10.1.1 Input Offset and Noise
  413 (1)
  10.1.2 Hysteresis
  414 (1)
  10.2 Using an Opamp for a Comparator
  415 (3)
  10.2.1 Input-Offset Voltage Errors
  417 (1)
  10.3 Charge-Injection Errors
  418 (8)
  10.3.1 Making Charge-Injection Signal Independent
  421 (1)
  10.3.2 Minimizing Errors Due to Charge-Injection
  421 (3)
  10.3.3 Speed of Multi-Stage Comparators
  424 (2)
  10.4 Latched Comparators
  426 (5)
  10.4.1 Latch-Mode Time Constant
  427 (3)
  10.4.2 Latch Offset
  430 (1)
  10.5 Examples of CMOS and BiCMOS Comparators
  431 (6)
  10.5.1 Input-Transistor Charge Trapping
  435 (2)
  10.6 Examples of Bipolar Comparators
  437 (2)
  10.7 Key Points
  439 (1)
  10.8 References
  440 (1)
  10.9 Problems
  440 (4)
  Chapter 11 Sample-and-Hold and Translinear Circuits
  444 (25)
  11.1 Performance of Sample-and-Hold Circuits
  444 (2)
  11.1.1 Testing Sample and Holds
  445 (1)
  11.2 MOS Sample-and-Hold Basics
  446 (6)
  11.3 Examples of CMOS S/H Circuits
  452 (4)
  11.4 Bipolar and BiCMOS Sample-and-Holds
  456 (4)
  11.5 Translinear Gain Cell
  460 (2)
  11.6 Translinear Multiplier
  462 (2)
  11.7 Key Points
  464 (1)
  11.8 References
  465 (1)
  11.9 Problems
  466 (3)
  Chapter 12 Continuous-Time Filters
  469 (68)
  12.1 Introduction to Continuous-Time Filters
  469 (2)
  12.1.1 First-Order Filters
  470 (1)
  12.1.2 Second-Order Filters
  470 (1)
  12.2 Introduction to Gm-C Filters
  471 (8)
  12.2.1 Integrators and Summers
  472 (2)
  12.2.2 Fully Differential Integrators
  474 (1)
  12.2.3 First-Order Filter
  475 (2)
  12.2.4 Biquad Filter
  477 (2)
  12.3 Transconductors Using Fixed Resistors
  479 (5)
  12.4 CMOS Transconductors Using Triode Transistors
  484 (9)
  12.4.1 Transconductors Using a Fixed-Bias Triode Transistor
  484 (2)
  12.4.2 Transconductors Using Varying Bias-Triode Transistors
  486 (5)
  12.4.3 Transconductors Using Constant Drain-Source Voltages
  491 (2)
  12.5 CMOS Transconductors Using Active Transistors
  493 (7)
  12.5.1 CMOS Pair
  493 (1)
  12.5.2 Constant Sum of Gate-Source Voltages
  494 (1)
  12.5.3 Source-Connected Differential Pair
  495 (1)
  12.5.4 Inverter-Based
  495 (2)
  12.5.5 Differential-Pair with Floating Voltage Sources
  497 (2)
  12.5.6 Bias-Offset Cross-Coupled Differential Pairs
  499 (1)
  12.6 Bipolar Transconductors
  500 (6)
  12.6.1 Gain-Cell Transconductors
  500 (1)
  12.6.2 Transconductors Using Multiple Differential Pairs
  501 (5)
  12.7 BiCMOS Transconductors
  506 (3)
  12.7.1 Tunable MOS in Triode
  506 (1)
  12.7.2 Fixed-Resistor Transconductor with a Translinear Multiplier
  507 (1)
  12.7.3 Fixed Active MOS Transconductor with a Translinear Multiplier
  508 (1)
  12.8 Active RC and MOSFET-C Filters
  509 (7)
  12.8.1 Active RC Filters
  510 (2)
  12.8.2 MOSFET-C Two-Transistor Integrators
  512 (3)
  12.8.3 Four-Transistor Integrators
  515 (6)
  12.8.4 R-MOSFET-C Filters
  521  
  12.9 Tuning Circuitry
  516 (9)
  12.9.1 Tuning Overview
  517 (2)
  12.9.2 Constant Transconductance
  519 (1)
  12.9.3 Frequency Tuning
  520 (2)
  12.9.4 Q-Factor Tuning
  522 (1)
  12.9.5 Tuning Methods Based on Adaptive Filtering
  523 (2)
  12.10 Introduction to Complex Filters
  525 (6)
  12.10.1 Complex Signal Processing
  525 (1)
  12.10.2 Complex Operations
  526 (1)
  12.10.3 Complex Filters
  527 (1)
  12.10.4 Frequency-Translated Analog Filters
  528 (3)
  12.11 Key Points
  531 (1)
  12.12 References
  532 (2)
  12.13 Problems
  534 (3)
  Chapter 13 Discrete-Time Signals
  537 (20)
  13.1 Overview of Some Signal Spectra
  537 (1)
  13.2 Laplace Transforms of Discrete-Time Signals
  537 (4)
  13.2.1 Spectra of Discrete-Time Signals
  540 (1)
  13.3 z-Transform
  541 (2)
  13.4 Downsampling and Upsampling
  543 (2)
  13.5 Discrete-Time Filters
  545 (7)
  13.5.1 Frequency Response of Discrete-Time Filters
  545 (3)
  13.5.2 Stability of Discrete-Time Filters
  548 (2)
  13.5.3 IIR and FIR Filters
  550 (1)
  13.5.4 Bilinear Transform
  550 (2)
  13.6 Sample-and-Hold Response
  552 (2)
  13.7 Key Points
  554 (1)
  13.8 References
  555 (1)
  13.9 Problems
  555 (2)
  Chapter 14 Switched-Capacitor Circuits
  557 (49)
  14.1 Basic Building Blocks
  557 (3)
  14.1.1 Opamps
  557 (1)
  14.1.2 Capacitors
  558 (1)
  14.1.3 Switches
  558 (1)
  14.1.4 Nonoverlapping Clocks
  559 (1)
  14.2 Basic Operation and Analysis
  560 (10)
  14.2.1 Resistor Equivalence of a Switched Capacitor
  560 (1)
  14.2.2 Parasitic-Sensitive Integrator
  560 (5)
  14.2.3 Parasitic-Insensitive Integrators
  565 (4)
  14.2.4 Signal-Flow-Graph Analysis
  569 (1)
  14.3 Noise in Switched-Capacitor Circuits
  570 (2)
  14.4 First-Order Filters
  572 (5)
  14.4.1 Switch Sharing
  575 (1)
  14.4.2 Fully Differential Filters
  575 (2)
  14.5 Biquad Filters
  577 (8)
  14.5.1 Low-Q Biquad Filter
  577 (1)
  14.5.2 High-Q Biquad Filter
  577 (8)
  14.6 Charge Injection
  585 (3)
  14.7 Switched-Capacitor Gain Circuits
  588 (5)
  14.7.1 Parallel Resistor-Capacitor Circuit
  588 (1)
  14.7.2 Resettable Gain Circuit
  588 (3)
  14.7.3 Capacitive-Reset Gain Circuit
  591 (2)
  14.8 Correlated Double-Sampling Techniques
  593 (1)
  14.9 Other Switched-Capacitor Circuits
  594 (6)
  14.9.1 Amplitude Modulator
  594 (1)
  14.9.2 Full-Wave Rectifier
  595 (1)
  14.9.3 Peak Detectors
  596 (1)
  14.9.4 Voltage-Controlled Oscillator
  596 (2)
  14.9.5 Sinusoidal Oscillator
  598 (2)
  14.10 Key Points
  600 (1)
  14.11 References
  601 (1)
  14.12 Problems
  602 (4)
  Chapter 15 Data Converter Fundamentals
  606 (17)
  15.1 Ideal D/A Converter
  606 (2)
  15.2 Ideal A/D Converter
  608 (1)
  15.3 Quantization Noise
  609 (3)
  15.3.1 Deterministic Approach
  609 (1)
  15.3.2 Stochastic Approach
  610 (2)
  15.4 Signed Codes
  612 (2)
  15.5 Performance Limitations
  614 (6)
  15.5.1 Resolution
  614 (1)
  15.5.2 Offset and Gain Error
  615 (1)
  15.5.3 Accuracy and Linearity
  615 (5)
  15.6 Key Points
  620 (1)
  15.7 References
  620 (1)
  15.8 Problems
  620 (3)
  Chapter 16 Nyquist-Rate D/A Converters
  623 (23)
  16.1 Decoder-Based Converters
  623 (5)
  16.1.1 Resistor String Converters
  623 (2)
  16.1.2 Folded Resistor-String Converters
  625 (1)
  16.1.3 Multiple Resistor-String Converters
  625 (2)
  16.1.4 Signed Outputs
  627 (1)
  16.2 Binary-Scaled Converters
  628 (6)
  16.2.1 Binary-Weighted Resistor Converters
  629 (1)
  16.2.2 Reduced-Resistance-Ratio Ladders
  630 (1)
  16.2.3 R-2R-Based Converters
  630 (2)
  16.2.4 Charge-Redistribution Switched-Capacitor Converters
  632 (1)
  16.2.5 Current-Mode Converters
  633 (1)
  16.2.6 Glitches
  633 (1)
  16.3 Thermometer-Code Converters
  634 (6)
  16.3.1 Thermometer-Code Current-Mode D/A Converters
  636 (1)
  16.3.2 Single-Supply Positive-Output Converters
  637 (1)
  16.3.3 Dynamically Matched Current Sources
  638 (2)
  16.4 Hybrid Converters
  640 (2)
  16.4.1 Resistor-Capacitor Hybrid Converters
  640 (1)
  16.4.2 Segmented Converters
  640 (2)
  16.5 Key Points
  642 (1)
  16.6 References
  643 (1)
  16.7 Problems
  643 (3)
  Chapter 17 Nyquist-Rate A/D Converters
  646 (50)
  17.1 Integrating Converters
  646 (4)
  17.2 Successive-Approximation Converters
  650 (12)
  17.2.1 DAC-Based Successive Approximation
  652 (1)
  17.2.2 Charge-Redistribution A/D
  653 (5)
  17.2.3 Resistor-Capacitor Hybrid
  658 (1)
  17.2.4 Speed Estimate for Charge-Redistribution Converters
  658 (1)
  17.2.5 Error Correction in Successive-Approximation Converters
  659 (3)
  17.2.6 Multi-Bit Successive-Approximation
  662 (1)
  17.3 Algorithmic (or Cyclic) A/D Converter
  662 (3)
  17.3.1 Ratio-Independent Algorithmic Converter
  662 (3)
  17.4 Pipelined A/D Converters
  665 (8)
  17.4.1 One-Bit-Per-Stage Pipelined Converter
  667 (2)
  17.4.2 1.5 Bit Per Stage Pipelined Converter
  669 (3)
  17.4.3 Pipelined Converter Circuits
  672 (1)
  17.4.4 Generalized k-Bit-Per-Stage Pipelined Converters
  673 (1)
  17.5 Flash Converters
  673 (4)
  17.5.1 Issues in Designing Flash A/D Converters
  675 (2)
  17.6 Two-Step A/D Converters
  677 (3)
  17.6.1 Two-Step Converter with Digital Error Correction
  679 (1)
  17.7 Interpolating A/D Converters
  680 (3)
  17.8 Folding A/D Converters
  683 (4)
  17.9 Time-Interleaved A/D Converters
  687 (3)
  17.10 Key Points
  690 (1)
  17.11 References
  691 (1)
  17.12 Problems
  692 (4)
  Chapter 18 Oversampling Converters
  696 (42)
  18.1 Oversampling without Noise Shaping
  696 (6)
  18.1.1 Quantization Noise Modelling
  697 (1)
  18.1.2 White Noise Assumption
  697 (2)
  18.1.3 Oversampling Advantage
  699 (2)
  18.1.4 The Advantage of 1-Bit D/A Converters
  701 (1)
  18.2 Oversampling with Noise Shaping
  702 (9)
  18.2.1 Noise-Shaped Delta-Sigma Modulator
  703 (1)
  18.2.2 First-Order Noise Shaping
  704 (2)
  18.2.3 Switched-Capacitor Realization of a First-Order A/D Converter
  706 (1)
  18.2.4 Second-Order Noise Shaping
  706 (2)
  18.2.5 Noise Transfer-Function Curves
  708 (1)
  18.2.6 Quantization Noise Power of 1-Bit Modulators
  709 (1)
  18.2.7 Error-Feedback Structure
  709 (2)
  18.3 System Architectures
  711 (3)
  18.3.1 System Architecture of Delta-Sigma A/D Converters
  711 (2)
  18.3.2 System Architecture of Delta-Sigma D/A Converters
  713 (1)
  18.4 Digital Decimation Filters
  714 (4)
  18.4.1 Multi-Stage
  715 (2)
  18.4.2 Single Stage
  717 (1)
  18.5 Higher-Order Modulators
  718 (3)
  18.5.1 Interpolative Architecture
  718 (1)
  18.5.2 Multi-Stage Noise Shaping (MASH) Architecture
  719 (2)
  18.6 Bandpass Oversampling Converters
  721 (1)
  18.7 Practical Considerations
  722 (5)
  18.7.1 Stability
  722 (1)
  18.7.2 Linearity of Two-Level Converters
  723 (2)
  18.7.3 Idle Tones
  725 (1)
  18.7.4 Dithering
  726 (1)
  18.7.5 Opamp Gain
  726 (1)
  18.8 Multi-Bit Oversampling Converters
  727 (3)
  18.8.1 Dynamic Element Matching
  727 (1)
  18.8.2 Dynamically Matched Current Source D/S Converters
  728 (1)
  18.8.3 Digital Calibration A/D Converter
  728 (1)
  18.8.4 A/D with Both Multi-Bit and Single-Bit Feedback
  729 (1)
  18.9 Third-Order A/D Design Example
  730 (2)
  18.10 Key Points
  732 (2)
  18.11 References
  734 (1)
  18.12 Problems
  735 (3)
  Chapter 19 Phase-Locked Loops
  738 (49)
  19.1 Basic Phase-Locked Loop Architecture
  738 (10)
  19.1.1 Voltage Controlled Oscillator
  739 (1)
  19.1.2 Divider
  740 (1)
  19.1.3 Phase Detector
  741 (5)
  19.1.4 Loop Filer
  746 (1)
  19.1.5 The PLL in Lock
  747 (1)
  19.2 Linearized Small-Signal Analysis
  748 (8)
  19.2.1 Second-Order PLL Model
  749 (2)
  19.2.2 Limitations of the Second-Order Small-Signal Model
  751 (3)
  19.2.3 PLL Design Example
  754 (2)
  19.3 Jitter and Phase Noise
  756 (9)
  19.3.1 Period Jitter
  760 (1)
  19.3.2 P-Cycle Jitter
  761 (1)
  19.3.3 Adjacent Period Jitter
  761 (1)
  19.3.4 Other Spectral Representations of Jitter
  762 (2)
  19.3.5 Probability Density Function of Jitter
  764 (1)
  19.4 Electronic Oscillators
  765 (12)
  19.4.1 Ring Oscillators
  766 (5)
  19.4.2 LC Oscillators
  771 (1)
  19.4.3 Phase Noise of Oscillators
  772 (5)
  19.5 Jitter and Phase Noise in PLLS
  777 (4)
  19.5.1 Input Phase Noise and Divider Phase Noise
  777 (1)
  19.5.2 VCO Phase Noise
  778 (1)
  19.5.3 Loop Filter Noise
  779 (2)
  19.6 Key Points
  781 (1)
  19.7 References
  782 (1)
  19.8 Problems
  782 (5)
Index   787  
Tony Chan Carusone completed the B.A.Sc. and Ph.D. degrees at the University of Toronto in 1997 and 2002 respectvely, during which tme he received the Governor-General's Silver Medal. Since 2001, he has been with the Department of Electrical and Computer Engineering at the University of Toronto where he is currently an Associate Professor. From 2002 to 2007 he held the Canada Research Chair in Integrated Systems and in 2008 was a visitng researcher at the University of Pavia. He is also an occasional consultant to industry, having worked for Snowbush Inc., Gennum Corp., and Intel Corp., all in the area of high-speed links. Tony was a co-author of the best student papers at both the 2007 and 2008 Custom Integrated Circuits Conference and the best paper at the 2005 Compound Semiconductor Integrated Circuits Symposium. He is an appointed member of the Administratve Commitee of the IEEE Solid-State Circuits Society, a member and past chair of the Analog Signal Processing Technical Commitee for the IEEE Circuits and Systems Society, and a past member and chair of the Wireline Communicatons subcommitee of the Custom Integrated Circuits Conference. He has served as a guest editor for both the IEEE Journal of Solid-State Circuits and the IEEE Transactons on Circuits and Systems I: Regular Papers, and served on the editorial board of the IEEE Transactons on Circuits and Systems II: Express Briefs from 2006 untl 2009 when he was Editor-in-Chief.