1 Propositional Logic |
|
1 | (18) |
|
|
1 | (4) |
|
1.2 Implication and Equivalence |
|
|
5 | (3) |
|
1.3 Adequate Sets of Connectives |
|
|
8 | (3) |
|
|
11 | (3) |
|
|
14 | (4) |
|
|
18 | (1) |
2 Semi-tensor Product of Matrices |
|
19 | (36) |
|
2.1 Multiple-Dimensional Data |
|
|
19 | (10) |
|
2.2 Semi-tensor Product of Matrices |
|
|
29 | (8) |
|
|
37 | (4) |
|
2.4 Properties of the Semi-tensor Product |
|
|
41 | (8) |
|
2.5 General Semi-tensor Product |
|
|
49 | (4) |
|
|
53 | (2) |
3 Matrix Expression of Logic |
|
55 | (12) |
|
3.1 Structure Matrix of a Logical Operator |
|
|
55 | (4) |
|
3.2 Structure Matrix for k-valued Logic |
|
|
59 | (4) |
|
|
63 | (2) |
|
|
65 | (2) |
4 Logical Equations |
|
67 | (36) |
|
4.1 Solution of a Logical Equation |
|
|
67 | (1) |
|
4.2 Equivalent Algebraic Equations |
|
|
68 | (10) |
|
|
78 | (6) |
|
|
84 | (1) |
|
4.5 k-valued Logical Equations |
|
|
85 | (4) |
|
4.6 Failure Location: An Application |
|
|
89 | (11) |
|
4.6.1 Matrix Expression of Route Logic |
|
|
89 | (3) |
|
|
92 | (5) |
|
4.6.3 Cascading Inference |
|
|
97 | (3) |
|
|
100 | (3) |
5 Topological Structure of a Boolean Network |
|
103 | (38) |
|
5.1 Introduction to Boolean Networks |
|
|
103 | (1) |
|
5.2 Dynamics of Boolean Networks |
|
|
104 | (4) |
|
5.3 Fixed Points and Cycles |
|
|
108 | (11) |
|
5.4 Some Classical Examples |
|
|
119 | (5) |
|
5.5 Serial Boolean Networks |
|
|
124 | (2) |
|
5.6 Higher Order Boolean Networks |
|
|
126 | (13) |
|
5.6.1 First Algebraic Form of Higher Order Boolean Networks |
|
|
128 | (9) |
|
5.6.2 Second Algebraic Form of Higher Order Boolean Networks |
|
|
137 | (2) |
|
|
139 | (2) |
6 Input-State Approach to Boolean Control Networks |
|
141 | (22) |
|
6.1 Boolean Control Networks |
|
|
141 | (2) |
|
6.2 Semi-tensor Product Vector Space vs Semi-tensor Product Space |
|
|
143 | (3) |
|
6.3 Cycles in Input-State Space |
|
|
146 | (5) |
|
6.4 Cascaded Boolean Networks |
|
|
151 | (3) |
|
6.5 Two Illustrative Examples |
|
|
154 | (7) |
|
|
161 | (2) |
7 Model Construction via Observed Data |
|
163 | (26) |
|
7.1 Reconstructing Networks |
|
|
163 | (8) |
|
7.2 Model Construction for General Networks |
|
|
171 | (5) |
|
7.3 Construction with Known Network Graph |
|
|
176 | (1) |
|
7.4 Least In-degree Model |
|
|
177 | (4) |
|
7.5 Construction of Uniform Boolean Network |
|
|
181 | (3) |
|
7.6 Modeling via Data with Errors |
|
|
184 | (3) |
|
|
187 | (2) |
8 State Space and Subspaces |
|
189 | (24) |
|
8.1 State Spaces of Boolean Networks |
|
|
189 | (2) |
|
8.2 Coordinate Transformation |
|
|
191 | (5) |
|
|
196 | (8) |
|
|
204 | (3) |
|
8.5 Indistinct Rolling Gear Structure |
|
|
207 | (5) |
|
|
212 | (1) |
9 Controllability and Observability of Boolean Control Networks |
|
213 | (20) |
|
9.1 Control via Input Boolean Network |
|
|
213 | (7) |
|
|
220 | (2) |
|
9.3 Controllability via Free Boolean Sequence |
|
|
222 | (5) |
|
|
227 | (4) |
|
|
231 | (2) |
10 Realization of Boolean Control Networks |
|
233 | (16) |
|
10.1 What Is a Realization? |
|
|
233 | (2) |
|
10.2 Controllable Normal Form |
|
|
235 | (4) |
|
10.3 Observable Normal Form |
|
|
239 | (3) |
|
10.4 Kalman Decomposition |
|
|
242 | (4) |
|
|
246 | (2) |
|
|
248 | (1) |
11 Stability and Stabilization |
|
249 | (26) |
|
|
249 | (4) |
|
|
253 | (8) |
|
11.3 Stabilization of Boolean Control Networks |
|
|
261 | (12) |
|
|
273 | (2) |
12 Disturbance Decoupling |
|
275 | (22) |
|
|
275 | (1) |
|
|
276 | (7) |
|
|
283 | (6) |
|
12.4 Canalizing Boolean Mapping |
|
|
289 | (3) |
|
12.5 Solving DDPs via Constant Controls |
|
|
292 | (3) |
|
|
295 | (2) |
13 Feedback Decomposition of Boolean Control Networks |
|
297 | (16) |
|
13.1 Decomposition of Control Systems |
|
|
297 | (1) |
|
13.2 The Cascading State-space Decomposition Problem |
|
|
298 | (5) |
|
13.3 Comparable Regular Subspaces |
|
|
303 | (2) |
|
13.4 The Parallel State-space Decomposition Problem |
|
|
305 | (3) |
|
13.5 Input–Output Decomposition |
|
|
308 | (3) |
|
|
311 | (2) |
14 k-valued Networks |
|
313 | (34) |
|
14.1 A Review of k-valued Logic |
|
|
313 | (3) |
|
14.2 Dynamics of k-valued Networks |
|
|
316 | (4) |
|
14.3 State Space and Coordinate Transformations |
|
|
320 | (4) |
|
14.4 Cycles and Transient Period |
|
|
324 | (1) |
|
14.5 Network Reconstruction |
|
|
325 | (5) |
|
14.6 k-valued Control Networks |
|
|
330 | (10) |
|
|
340 | (5) |
|
|
345 | (2) |
15 Optimal Control |
|
347 | (24) |
|
15.1 Input-State Transfer Graphs |
|
|
347 | (4) |
|
15.2 Topological Structure of Logical Control Networks |
|
|
351 | (5) |
|
15.3 Optimal Control of Logical Control Networks |
|
|
356 | (5) |
|
15.4 Optimal Control of Higher-Order Logical Control Networks |
|
|
361 | (8) |
|
|
369 | (2) |
16 Input-State Incidence Matrices |
|
371 | (18) |
|
16.1 The Input-State Incidence Matrix |
|
|
371 | (3) |
|
|
374 | (4) |
|
16.3 Trajectory Tracking and Control Design |
|
|
378 | (1) |
|
|
379 | (3) |
|
16.5 Fixed Points and Cycles |
|
|
382 | (1) |
|
16.6 Mix-valued Logical Systems |
|
|
383 | (5) |
|
|
388 | (1) |
17 Identification of Boolean Control Networks |
|
389 | (20) |
|
17.1 What Is Identification9 |
|
|
389 | (1) |
|
17.2 Identification via Input-State Data |
|
|
390 | (3) |
|
17.3 Identification via Input–Output Data |
|
|
393 | (3) |
|
|
396 | (8) |
|
|
396 | (4) |
|
17.4.2 Numerical Solution Based on Network Graph |
|
|
400 | (3) |
|
17.4.3 Identification of Higher-Order Systems |
|
|
403 | (1) |
|
17.5 Approximate Identification |
|
|
404 | (3) |
|
|
407 | (2) |
18 Applications to Game Theory |
|
409 | (22) |
|
18.1 Strategies with Finite Memory |
|
|
409 | (3) |
|
|
412 | (3) |
|
|
415 | (2) |
|
18.4 Sub-Nash Solution for Zero-Memory Strategies |
|
|
417 | (2) |
|
18.5 Nash Equilibrium for A-Memory Strategies |
|
|
419 | (2) |
|
18.6 Common Nash (Sub-Nash) Solutions for A-Memory Strategies |
|
|
421 | (8) |
|
|
429 | (2) |
19 Random Boolean Networks |
|
431 | (20) |
|
|
431 | (8) |
|
19.2 Vector Form of Random Boolean Variables |
|
|
439 | (3) |
|
19.3 Matrix Expression of a Random Boolean Network |
|
|
442 | (5) |
|
19.4 Some Topological Properties |
|
|
447 | (3) |
|
|
450 | (1) |
Appendix A Numerical Algorithms |
|
451 | (12) |
|
A.1 Computation of Logical Matrices |
|
|
451 | (2) |
|
|
453 | (5) |
|
|
458 | (5) |
Appendix B Proofs of Some Theorems Concerning the Semi-tensor Product |
|
463 | (3) |
References |
|
466 | (1) |
Index |
|
467 | |