|
1 Overview of Networked Control Systems |
|
|
1 | (8) |
|
1.1 Introduction and Motivation |
|
|
1 | (4) |
|
|
2 | (1) |
|
1.1.2 Brief History of NCS |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
5 | (4) |
|
|
7 | (2) |
|
2 Entropies and Capacities in Networked Control Systems |
|
|
9 | (20) |
|
|
9 | (2) |
|
2.1.1 Entropy in Information Theory |
|
|
9 | (1) |
|
2.1.2 Topological Entropy in Feedback Theory |
|
|
10 | (1) |
|
|
11 | (3) |
|
|
12 | (1) |
|
|
12 | (2) |
|
2.3 Control Over Communication Networks |
|
|
14 | (4) |
|
2.3.1 Quantized Control Over Noiseless Networks |
|
|
14 | (2) |
|
2.3.2 Quantized Control Over Noisy Networks |
|
|
16 | (2) |
|
2.4 Estimation Over Communication Networks |
|
|
18 | (5) |
|
2.4.1 Quantized Estimation Over Noiseless Networks |
|
|
18 | (2) |
|
2.4.2 Data-Driven Communication for Estimation |
|
|
20 | (1) |
|
2.4.3 Estimation Over Noisy Networks |
|
|
21 | (2) |
|
|
23 | (6) |
|
|
24 | (5) |
|
3 Data Rate Theorem for Stabilization Over Noiseless Channels |
|
|
29 | (10) |
|
|
29 | (2) |
|
3.2 Classical Approach for Quantized Control |
|
|
31 | (1) |
|
3.3 Data Rate Theorem for Stabilization |
|
|
31 | (5) |
|
|
32 | (1) |
|
3.3.2 Proof of Sufficiency |
|
|
33 | (3) |
|
|
36 | (3) |
|
|
36 | (3) |
|
4 Data Rate Theorem for Stabilization Over Erasure Channels |
|
|
39 | (14) |
|
|
39 | (2) |
|
|
41 | (7) |
|
|
42 | (2) |
|
4.2.2 Proof of Sufficiency |
|
|
44 | (4) |
|
|
48 | (3) |
|
|
51 | (2) |
|
|
51 | (2) |
|
5 Data Rate Theorem for Stabilization Over Gilbert-Elliott Channels |
|
|
53 | (30) |
|
|
53 | (2) |
|
|
55 | (1) |
|
5.2.1 Random Down Sampling |
|
|
55 | (1) |
|
5.2.2 Statistical Properties of Sojourn Times |
|
|
55 | (1) |
|
|
56 | (7) |
|
5.3.1 Noise Free Systems with Bounded Initial Support |
|
|
56 | (2) |
|
|
58 | (2) |
|
5.3.3 Proof of Sufficiency |
|
|
60 | (3) |
|
5.4 General Stochastic Scalar Systems |
|
|
63 | (10) |
|
|
64 | (3) |
|
5.4.2 Proof of Sufficiency |
|
|
67 | (6) |
|
|
73 | (7) |
|
|
73 | (1) |
|
|
73 | (2) |
|
|
75 | (5) |
|
|
80 | (1) |
|
|
80 | (3) |
|
|
81 | (2) |
|
6 Stabilization of Linear Systems Over Fading Channels |
|
|
83 | (40) |
|
|
83 | (4) |
|
|
87 | (8) |
|
6.2.1 Parallel Transmission Strategy |
|
|
93 | (1) |
|
6.2.2 Serial Transmission Strategy |
|
|
94 | (1) |
|
|
95 | (6) |
|
|
97 | (1) |
|
6.3.2 Triangularly Decoupled Plants |
|
|
98 | (3) |
|
6.4 Extension and Application |
|
|
101 | (5) |
|
6.4.1 Stabilization Over Output Fading Channels |
|
|
101 | (2) |
|
6.4.2 Stabilization of a Finite Platoon |
|
|
103 | (3) |
|
6.5 Channel Processing and Channel Feedback |
|
|
106 | (2) |
|
|
108 | (12) |
|
6.6.1 Feedback Stabilization |
|
|
110 | (5) |
|
|
115 | (3) |
|
|
118 | (2) |
|
|
120 | (3) |
|
|
120 | (3) |
|
7 Stabilization of Linear Systems via Infinite-Level Logarithmic Quantization |
|
|
123 | (26) |
|
|
124 | (9) |
|
7.1.1 Logarithmic Quantization |
|
|
124 | (2) |
|
7.1.2 Sector Bound Approach |
|
|
126 | (7) |
|
|
133 | (3) |
|
|
133 | (1) |
|
7.2.2 Quantized Measurements |
|
|
134 | (2) |
|
7.3 Stabilization of MIMO Systems |
|
|
136 | (5) |
|
|
136 | (4) |
|
7.3.2 Quantized Measurements |
|
|
140 | (1) |
|
7.4 Quantized Quadratic Performance Control |
|
|
141 | (3) |
|
|
144 | (3) |
|
|
147 | (2) |
|
|
148 | (1) |
|
8 Stabilization of Linear Systems via Finite-Level Logarithmic Quantization |
|
|
149 | (26) |
|
8.1 Quadratic Stabilization via Finite-level Quantization |
|
|
149 | (11) |
|
8.1.1 Finite-level Quantizer |
|
|
149 | (4) |
|
8.1.2 Number of Quantization Levels |
|
|
153 | (3) |
|
8.1.3 Robustness Against Additive Noises |
|
|
156 | (2) |
|
8.1.4 Illustrative Examples |
|
|
158 | (2) |
|
8.2 Attainability of the Minimum Data Rate for Stabilization |
|
|
160 | (14) |
|
8.2.1 Problem Simplification |
|
|
161 | (2) |
|
8.2.2 Network Configuration |
|
|
163 | (2) |
|
8.2.3 Quantized Control Feedback |
|
|
165 | (6) |
|
8.2.4 Quantized State Feedback |
|
|
171 | (3) |
|
|
174 | (1) |
|
|
174 | (1) |
|
9 Stabilization of Markov Jump Linear Systems via Logarithmic Quantization |
|
|
175 | (18) |
|
|
175 | (13) |
|
9.1.1 Feedback Stabilization |
|
|
178 | (6) |
|
|
184 | (1) |
|
|
185 | (3) |
|
9.2 Stabilization Over Lossy Channels |
|
|
188 | (3) |
|
9.2.1 Binary Dropouts Model |
|
|
188 | (2) |
|
9.2.2 Bounded Dropouts Model |
|
|
190 | (1) |
|
9.2.3 Extension to Output Feedback |
|
|
191 | (1) |
|
|
191 | (2) |
|
|
192 | (1) |
|
10 Kalman Filtering with Quantized Innovations |
|
|
193 | (12) |
|
|
193 | (2) |
|
10.2 Quantized Innovations Kalman Filter |
|
|
195 | (6) |
|
10.2.1 Multi-level Quantized Filtering |
|
|
195 | (3) |
|
10.2.2 Optimal Quantization Thresholds |
|
|
198 | (1) |
|
10.2.3 Convergence Analysis |
|
|
199 | (2) |
|
|
201 | (1) |
|
|
202 | (2) |
|
|
204 | (1) |
|
|
204 | (1) |
|
11 LQG Control with Quantized Innovation Kalman Filter |
|
|
205 | (18) |
|
|
205 | (2) |
|
11.2 Separation Principle |
|
|
207 | (6) |
|
11.3 State Estimator Design |
|
|
213 | (4) |
|
|
217 | (1) |
|
11.5 An Illustrative Example |
|
|
218 | (2) |
|
|
220 | (3) |
|
|
221 | (2) |
|
12 Kalman Filtering with Faded Measurements |
|
|
223 | (16) |
|
|
223 | (2) |
|
12.2 Stability Analysis of Kalman Filter with Fading |
|
|
225 | (9) |
|
|
225 | (7) |
|
12.2.2 Mean Covariance Stability |
|
|
232 | (2) |
|
|
234 | (2) |
|
|
236 | (3) |
|
|
236 | (3) |
|
13 Kalman Filtering with Packet Losses |
|
|
239 | (30) |
|
13.1 Networked Estimation |
|
|
239 | (3) |
|
13.1.1 Intermittent Kalman Filter |
|
|
241 | (1) |
|
|
242 | (1) |
|
13.2 Equivalence of the Two Stability Notions |
|
|
242 | (4) |
|
13.3 Second-Order Systems |
|
|
246 | (1) |
|
13.4 Higher-Order Systems |
|
|
247 | (2) |
|
13.4.1 Non-degenerate Systems |
|
|
248 | (1) |
|
13.5 Illustrative Examples |
|
|
249 | (2) |
|
|
251 | (16) |
|
13.6.1 Proof of Theorem 13.3 |
|
|
253 | (3) |
|
13.6.2 Proof of Theorem 13.4 |
|
|
256 | (3) |
|
13.6.3 Proofs of Results in Sect. 13.4 |
|
|
259 | (8) |
|
|
267 | (2) |
|
|
267 | (2) |
|
14 Kalman Filtering with Scheduled Measurements |
|
|
269 | (24) |
|
14.1 Networked Estimation |
|
|
269 | (2) |
|
14.1.1 Scheduling Problems |
|
|
270 | (1) |
|
14.2 Controllable Scheduler |
|
|
271 | (10) |
|
14.2.1 An Approximate MMSE Estimator |
|
|
271 | (3) |
|
14.2.2 An Illustrative Example |
|
|
274 | (3) |
|
14.2.3 Stability Analysis |
|
|
277 | (4) |
|
14.3 Uncontrollable Scheduler |
|
|
281 | (9) |
|
14.3.1 Intermittent Kalman Filter |
|
|
281 | (2) |
|
14.3.2 Second-Order System |
|
|
283 | (5) |
|
14.3.3 Higher-Order System |
|
|
288 | (2) |
|
|
290 | (3) |
|
|
291 | (2) |
|
15 Parameter Estimation with Scheduled Measurements |
|
|
293 | (24) |
|
15.1 Innovation Based Scheduler |
|
|
293 | (2) |
|
15.2 Maximum Likelihood Estimation |
|
|
295 | (7) |
|
|
295 | (3) |
|
15.2.2 Estimation Performance |
|
|
298 | (1) |
|
|
299 | (3) |
|
|
302 | (1) |
|
15.4 Iterative ML Estimation |
|
|
303 | (4) |
|
15.4.1 Adaptive Scheduler |
|
|
304 | (3) |
|
15.5 Proof of Theorem 15.1 |
|
|
307 | (3) |
|
|
310 | (3) |
|
|
313 | (1) |
|
|
313 | (2) |
|
|
315 | (2) |
|
|
316 | (1) |
Appendix A On Matrices |
|
317 | (2) |
Index |
|
319 | |