|
|
1 | (8) |
|
|
9 | (14) |
|
2.1 Simple Linear Regression Model |
|
|
9 | (1) |
|
2.2 Multiple Regression Model |
|
|
10 | (1) |
|
2.3 Estimation of Parameters |
|
|
11 | (5) |
|
2.3.1 Method of Least Squares |
|
|
12 | (3) |
|
2.3.2 Maximum Likelihood Estimation |
|
|
15 | (1) |
|
|
16 | (3) |
|
|
19 | (4) |
|
3 Exponential Family of Distributions |
|
|
23 | (8) |
|
3.1 Exponential Family and Sufficiency |
|
|
24 | (4) |
|
3.2 Some Important Properties |
|
|
28 | (3) |
|
4 Generalized Linear Models |
|
|
31 | (20) |
|
|
31 | (1) |
|
4.2 Exponential Family and GLM |
|
|
32 | (2) |
|
4.3 Expected Value and Variance |
|
|
34 | (1) |
|
|
35 | (3) |
|
4.5 Multinomial Response Model |
|
|
38 | (2) |
|
|
40 | (3) |
|
|
43 | (4) |
|
|
47 | (4) |
|
5 Covariate--Dependent Markov Models |
|
|
51 | (16) |
|
|
51 | (1) |
|
5.2 First Order Markov Model |
|
|
52 | (2) |
|
5.3 Conditional Model for Second Order Markov Chain with Covariate Dependence |
|
|
54 | (3) |
|
5.4 Covariate Dependent Model for Markov Chain of Order r |
|
|
57 | (1) |
|
|
58 | (2) |
|
|
60 | (7) |
|
6 Modeling Bivariate Binary Data |
|
|
67 | (20) |
|
|
67 | (1) |
|
6.2 Bivariate Bernoulli Distribution |
|
|
68 | (1) |
|
6.3 Bivariate Binary Model with Covariate Dependence |
|
|
69 | (3) |
|
6.3.1 Covariate-Dependent Model |
|
|
70 | (1) |
|
6.3.2 Likelihood Function and Estimating Equations |
|
|
71 | (1) |
|
6.4 Test for Dependence in Bivariate Binary Outcomes |
|
|
72 | (4) |
|
6.4.1 Measure of Dependence |
|
|
72 | (1) |
|
|
73 | (2) |
|
6.4.3 Test for Dependence |
|
|
75 | (1) |
|
6.5 Generalized Bivariate Bernoulli Model |
|
|
76 | (6) |
|
6.5.1 The Bivariate Bernoulli Model |
|
|
77 | (2) |
|
6.5.2 Estimating Equations |
|
|
79 | (2) |
|
|
81 | (1) |
|
6.6 Some Alternative Binary Repeated Measures Models |
|
|
82 | (2) |
|
|
84 | (3) |
|
7 Bivariate Geometric Model |
|
|
87 | (10) |
|
|
87 | (1) |
|
7.2 Univariate Geometric Distribution |
|
|
88 | (1) |
|
7.3 Bivariate Geometric Distribution: Marginal and Conditional Models |
|
|
88 | (3) |
|
7.4 Bivariate Geometric Distribution: Joint Model |
|
|
91 | (2) |
|
|
93 | (4) |
|
8 Models for Bivariate Count Data: Bivariate Poisson Distribution |
|
|
97 | (28) |
|
|
97 | (1) |
|
8.2 The Poisson--Poisson Distribution |
|
|
98 | (1) |
|
8.3 Bivariate GLM for Poisson-Poisson |
|
|
99 | (4) |
|
8.3.1 Model and Estimation |
|
|
99 | (1) |
|
8.3.2 Overdispersion in Count Data |
|
|
100 | (1) |
|
8.3.3 Tests for Goodness of Fit |
|
|
101 | (1) |
|
8.3.4 Simple Tests for Overdispersion With or Without Covariate Dependence |
|
|
102 | (1) |
|
8.4 Zero-Truncated Bivariate Poisson |
|
|
103 | (5) |
|
8.4.1 Zero-Truncated Poisson Distribution |
|
|
104 | (1) |
|
8.4.2 A Generalized Zero-Truncated BVP Linear Model |
|
|
105 | (2) |
|
|
107 | (1) |
|
8.4.4 Deviance and Goodness of Fit |
|
|
107 | (1) |
|
8.5 Right-Truncated Bivariate Poisson Model |
|
|
108 | (6) |
|
8.5.1 Bivariate Right-Truncated Poisson-Poisson Model |
|
|
108 | (2) |
|
8.5.2 Predicted Probabilities |
|
|
110 | (2) |
|
8.5.3 Test for Goodness of Fit |
|
|
112 | (2) |
|
8.6 Double Poisson Distribution |
|
|
114 | (7) |
|
8.6.1 Double Poisson Model |
|
|
114 | (4) |
|
8.6.2 Bivariate Double Poisson Model |
|
|
118 | (3) |
|
|
121 | (4) |
|
9 Bivariate Negative Binomial and Multinomial Models |
|
|
125 | (14) |
|
|
125 | (1) |
|
9.2 Review of GLM for Multinomial |
|
|
126 | (2) |
|
9.3 Bivariate Multinomial |
|
|
128 | (3) |
|
9.4 Tests for Comparison of Models |
|
|
131 | (2) |
|
9.5 Negative Multinomial Distribution and Bivariate GLM |
|
|
133 | (4) |
|
9.5.1 GLM for Negative Multinomial |
|
|
134 | (3) |
|
9.6 Application of Negative Multinomial Model |
|
|
137 | (2) |
|
10 Bivariate Exponential Model |
|
|
139 | (12) |
|
|
139 | (1) |
|
10.2 Bivariate Exponential Distributions |
|
|
139 | (3) |
|
10.3 Bivariate Exponential Generalized Linear Model |
|
|
142 | (4) |
|
10.4 Bivariate Exponential GLM Proposed by Iwasaki and Tsubaki |
|
|
146 | (2) |
|
|
148 | (3) |
|
11 Quasi-Likelihood Methods |
|
|
151 | (10) |
|
|
151 | (1) |
|
11.2 Likelihood Function and GLM |
|
|
152 | (1) |
|
11.3 Quasi-likelihood Functions |
|
|
153 | (2) |
|
11.4 Estimation of Parameters |
|
|
155 | (3) |
|
|
158 | (3) |
|
12 Generalized Estimating Equation |
|
|
161 | (8) |
|
|
161 | (1) |
|
|
161 | (2) |
|
12.3 Estimation of Parameters |
|
|
163 | (1) |
|
12.4 Steps in a GEE: Estimation and Test |
|
|
164 | (2) |
|
|
166 | (3) |
|
13 Generalized Linear Mixed Models |
|
|
169 | (8) |
|
|
169 | (1) |
|
13.2 Generalized Linear Mixed Model |
|
|
169 | (1) |
|
13.3 Identity Link Function |
|
|
170 | (1) |
|
|
170 | (1) |
|
|
171 | (2) |
|
|
173 | (2) |
|
|
175 | (2) |
|
14 Generalized Multivariate Models |
|
|
177 | (14) |
|
|
177 | (2) |
|
14.2 Multivariate Poisson Distribution |
|
|
179 | (2) |
|
14.3 Multivariate Negative Binomial Distribution |
|
|
181 | (1) |
|
14.4 Multivariate Geometric Distribution |
|
|
182 | (2) |
|
14.5 Multivariate Normal Distribution |
|
|
184 | (3) |
|
|
187 | (4) |
|
15 Multistate and Multistage Models |
|
|
191 | (22) |
|
|
191 | (1) |
|
|
192 | (4) |
|
15.3 Censoring: Construction of Likelihood Function |
|
|
196 | (1) |
|
15.4 Proportional Hazards Model |
|
|
197 | (2) |
|
15.5 Competing Risk Proportional Hazards Model |
|
|
199 | (1) |
|
15.6 Multistate Hazards Model |
|
|
200 | (3) |
|
15.7 Multistage Hazards Model |
|
|
203 | (4) |
|
|
207 | (6) |
|
16 Analysing Data Using R and SAS |
|
|
213 | (22) |
|
|
213 | (22) |
References |
|
235 | (14) |
Subject Index |
|
249 | |