Preface |
|
xi | |
Author Biographies |
|
xix | |
1 Introduction |
|
1 | (12) |
|
1.1 The Spatial Theory of Voting |
|
|
2 | (9) |
|
1.1.1 Theoretical Development and Applications of the Spatial Voting Model |
|
|
5 | (2) |
|
1.1.2 The Development of Empirical Estimation Methods for Spatial Models of Voting |
|
|
7 | (1) |
|
1.1.3 The Basic Space Theory |
|
|
8 | (3) |
|
1.2 Summary of Data Types Analyzed by Spatial Voting Models |
|
|
11 | (1) |
|
|
11 | (2) |
2 The Basics |
|
13 | (26) |
|
|
14 | (14) |
|
|
14 | (2) |
|
|
16 | (2) |
|
|
18 | (1) |
|
2.1.4 Probability Distributions and Random Numbers |
|
|
19 | (1) |
|
2.1.5 Loops and Functions |
|
|
20 | (1) |
|
2.1.6 The apply and sweep Functions |
|
|
21 | (1) |
|
|
22 | (1) |
|
2.1.8 Creating Scatter Plots and Kernel Density Plots |
|
|
23 | (5) |
|
|
28 | (7) |
|
2.2.1 Reading Data from Stata into R |
|
|
28 | (1) |
|
2.2.2 Reading Data from SPSS into R |
|
|
29 | (3) |
|
2.2.3 Reading Text and Spreadsheet Files into R |
|
|
32 | (3) |
|
|
35 | (2) |
|
2.3.1 Writing Data as a Stata File |
|
|
35 | (1) |
|
2.3.2 Writing Data as Text and .csv Files |
|
|
36 | (1) |
|
2.3.3 The dput/dget and save/load Functions in R |
|
|
37 | (1) |
|
|
37 | (2) |
3 Analyzing Issue Scales |
|
39 | (64) |
|
3.1 Aldrich-McKelvey Scaling |
|
|
40 | (26) |
|
3.1.1 The basicspace Package in R |
|
|
43 | (1) |
|
3.1.2 Example 1: 2009 European Election Study (French Module) |
|
|
44 | (5) |
|
3.1.3 Example 2: 1968 American National Election Study Urban Unrest and Vietnam War Scales |
|
|
49 | (6) |
|
3.1.4 Estimating Bootstrapped Standard Errors for Aldrich-McKelvey Scaling |
|
|
55 | (1) |
|
3.1.5 Bayesian Aldrich-McKelvey Scaling |
|
|
56 | (5) |
|
3.1.6 Comparing Aldrich-McKelvey Standard Errors |
|
|
61 | (5) |
|
3.2 Basic Space Scaling: The blackbox Function |
|
|
66 | (17) |
|
3.2.1 Example 1: 2000 Convention Delegate Study |
|
|
67 | (8) |
|
3.2.2 Example 2: 2010 Swedish Parliamentary Candidate Survey |
|
|
75 | (4) |
|
3.2.3 Estimating Bootstrapped Standard Errors for Black Box Scaling |
|
|
79 | (4) |
|
3.3 Basic Space Scaling: The blackbox_transpose Function |
|
|
83 | (8) |
|
3.3.1 Example 1: 2000 and 2006 Comparative Study of Electoral Systems (Mexican Modules) |
|
|
83 | (4) |
|
3.3.2 Estimating Bootstrapped Standard Errors for Black Box Transpose Scaling |
|
|
87 | (2) |
|
3.3.3 Using the blackbox_transpose Function on Datasets with Large Numbers of Respondents |
|
|
89 | (2) |
|
|
91 | (7) |
|
|
98 | (1) |
|
|
99 | (4) |
4 Analyzing Similarities and Dissimilarities Data |
|
103 | (44) |
|
4.1 Classical Metric Multidimensional Scaling |
|
|
104 | (15) |
|
4.1.1 Example 1: Nations Similarities Data |
|
|
107 | (2) |
|
4.1.2 Metric MDS Using Numerical Optimization |
|
|
109 | (5) |
|
4.1.3 Metric MDS Using Majorization (SMACOF) |
|
|
114 | (1) |
|
4.1.4 The smacof Package in R |
|
|
114 | (5) |
|
4.2 Non-metric Multidimensional Scaling |
|
|
119 | (9) |
|
4.2.1 Example 1: Nations Similarities Data |
|
|
120 | (3) |
|
4.2.2 Example 2: 90th US Senate Agreement Scores |
|
|
123 | (5) |
|
4.3 Bayesian Multidimensional Scaling |
|
|
128 | (4) |
|
4.3.1 Example 1: Nations Similarities Data |
|
|
129 | (3) |
|
4.4 Individual Differences Multidimensional Scaling |
|
|
132 | (9) |
|
4.4.1 Example 1: 2009 European Election Study (French Module) |
|
|
137 | (4) |
|
|
141 | (2) |
|
|
143 | (4) |
5 Unfolding Analysis of Rating Scale Data |
|
147 | (36) |
|
5.1 Solving the Thermometers Problem |
|
|
148 | (2) |
|
5.2 Metric Unfolding Using the MLSMU6 Procedure |
|
|
150 | (6) |
|
5.2.1 Example 1: 1981 Interest Group Ratings of US Senators Data |
|
|
154 | (2) |
|
5.3 Metric Unfolding Using Majorization (SMACOF) |
|
|
156 | (9) |
|
5.3.1 Example 1: 2009 European Election Study (Danish Module) |
|
|
159 | (4) |
|
5.3.2 Comparing the MLSMU6 and SMACOF Metric Unfolding Procedures |
|
|
163 | (2) |
|
5.4 Bayesian Multidimensional Unfolding |
|
|
165 | (13) |
|
5.4.1 Example 1: 1968 American National Election Study Feeling Thermometers Data |
|
|
166 | (12) |
|
|
178 | (2) |
|
|
180 | (3) |
6 Unfolding Analysis of Binary Choice Data |
|
183 | (94) |
|
6.1 The Geometry of Legislative Voting |
|
|
184 | (2) |
|
6.2 Reading Legislative Roll Call Data into R with the pscl Pack- age |
|
|
186 | (3) |
|
6.3 Parametric Methods - NOMINATE |
|
|
189 | (25) |
|
6.3.1 Obtaining Uncertainty Estimates with the Parametric Bootstrap |
|
|
193 | (1) |
|
6.3.2 Types of NOMINATE Scores |
|
|
193 | (2) |
|
6.3.3 Accessing DW-NOMINATE Scores |
|
|
195 | (1) |
|
6.3.4 The wnominate Package in R |
|
|
196 | (1) |
|
6.3.5 Example 1: The 108th US House |
|
|
197 | (15) |
|
6.3.6 Example 2: The First European Parliament (Using the Parametric Bootstrap) |
|
|
212 | (2) |
|
|
214 | (7) |
|
6.4.1 The anominate Package in R |
|
|
217 | (4) |
|
6.5 Parametric Methods - Bayesian Item Response Theory |
|
|
221 | (28) |
|
6.5.1 The MCMCpack and pscl Packages in R |
|
|
225 | (1) |
|
6.5.2 Example 1: The 2000 Term of the US Supreme Court (Unidimensional IRT) |
|
|
225 | (6) |
|
6.5.3 Running Multiple Markov Chains in MCMCpack and pscl |
|
|
231 | (3) |
|
6.5.4 Example 2: The Confirmation Vote of Robert Bork to the US Supreme Court (Unidimensional IRT) |
|
|
234 | (8) |
|
6.5.5 Example 3: The 89th US Senate (Multidimensional IRT) |
|
|
242 | (7) |
|
6.6 Nonparametric Methods - Optimal Classification |
|
|
249 | (15) |
|
6.6.1 The oc Package in R |
|
|
250 | (1) |
|
6.6.2 Example 1: The French National Assembly during the Fourth Republic |
|
|
250 | (8) |
|
6.6.3 Example 2: 2008 American National Election Study Feeling Thermometers Data |
|
|
258 | (6) |
|
6.7 Conclusion: Comparing Methods for the Analysis of Legislative Roll Call Data |
|
|
264 | (9) |
|
6.7.1 Identification of the Model Parameters |
|
|
267 | (2) |
|
6.7.2 Comparing Ideal Point Estimates for the 111th US Senate |
|
|
269 | (4) |
|
|
273 | (4) |
7 Advanced Topics |
|
277 | (34) |
|
7.1 Using Latent Estimates as Variables |
|
|
278 | (17) |
|
7.1.1 Latent Variables as Independent Variables |
|
|
278 | (4) |
|
7.1.2 Latent Variables as Dependent Variables |
|
|
282 | (4) |
|
|
286 | (9) |
|
7.2 Ordinal and Dynamic IRT Models |
|
|
295 | (14) |
|
7.2.1 IRT with Ordinal Choice Data |
|
|
296 | (7) |
|
|
303 | (6) |
|
|
309 | (2) |
References |
|
311 | (19) |
Index |
|
330 | |