Muutke küpsiste eelistusi

Antennas [Kõva köide]

  • Kõva köide
  • Hind: 129,85 €*
  • * saadame teile pakkumise kasutatud raamatule, mille hind võib erineda kodulehel olevast hinnast
  • See raamat on trükist otsas, kuid me saadame teile pakkumise kasutatud raamatule.
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Lisa soovinimekirja
Offering a treatment of the theory and practice of modern antenna design and use, the coverage of this text ranges from the fundamentals of electromagnetism and radiation, through axisymmetric systems and arrays, to conclude with polarimetry, signal theory and antenna measurement.
List of contributors xv(1)
Foreword xvi(1)
Acknowledgements xvii
1 Fundamentals of electromagnetism
1(24)
1.1 Maxwell's equations
1(9)
1.1.1 Maxwell's equations in an arbitrary medium
1(3)
1.1.2 Linear media
4(2)
1.1.3 Conducting media
6(2)
1.1.4 Reciprocity theorem
8(2)
1.2 Power and energy
10(2)
1.2.1 Power volume densities
10(1)
1.2.2 Energy volume densities
10(1)
1.2.3 Poynting vector and power
11(1)
1.3 Plane waves in linear media
12(8)
1.3.1 Plane waves in an isotropic linear medium
12(6)
1.3.2 Skin effect
18(2)
Further reading
20(1)
Exercises
21(4)
2 Radiation
25(21)
2.1 Plane wave spectrum
25(13)
2.1.1 Spectral domain
26(2)
2.1.2 Electromagnetic field in a semi-infinite space with no sources
28(5)
2.1.3 The far field
33(5)
2.2 Kirchhoff's formulation
38(5)
2.2.1 Green's identity and Green's functions
38(1)
2.2.2 Kirchhoff's integral formulation
39(3)
2.2.3 Plane wave spectrum and Kirchhoff's formulation
42(1)
Further reading
43(1)
Exercises
44(2)
3 Antennas in transmission
46(24)
3.1 Far field radiation
46(6)
3.1.1 Vector characteristic of the radiation from the antenna
46(1)
3.1.2 Translation theorem
47(1)
3.1.3 Application: radiation produced by an arbitrary current
48(3)
3.1.4 Radiated power
51(1)
3.2 Field radiated from an antenna
52(7)
3.2.1 Elementary dipoles
52(3)
3.2.2 Plane-aperture radiation
55(4)
3.3 Directivity, gain, radiation pattern
59(6)
3.3.1 Radiated power
59(1)
3.3.2 Directivity
60(1)
3.3.3 Gain
60(2)
3.3.4 Radiation pattern
62(1)
3.3.5 Input impedance
63(2)
Further reading
65(1)
Exercises
66(4)
4 Receiving antennas
70(17)
4.1 Antenna reciprocity theorem
70(5)
4.1.1 Reciprocity theorem applied to a source-free closed surface
70(4)
4.1.2 Relation between the field on transmit and the field on receive
74(1)
4.2 Antenna effective receiving area
75(2)
4.2.1 Definition
75(1)
4.2.2 Relationship between gain and effective receiving area
76(1)
4.3 Energy transmission between two antennas
77(2)
4.3.1 The Friis transmission formula
77(1)
4.3.2 Radar equation
78(1)
4.4 Antenna behaviour in the presence of noise
79(5)
4.4.1 Power radiated by a body at absolute temperature T
79(3)
4.4.2 Noise temperature of the antenna
82(1)
4.4.3 Noise temperature of the receiving system
83(1)
Further reading
84(1)
Exercises
85(2)
5 Antennas of simple geometry
87(30)
5.1 Aperture antennas
87(14)
5.1.1 Parabolic antennas
87(5)
5.1.2 Rectangular horns
92(9)
5.2 Wire antennas
101(12)
5.2.1 Electric dipoles
101(6)
5.2.2 Travelling wave rectilinear antennas
107(2)
5.2.3 Loops and helical antennas
109(4)
Further reading
113(1)
Exercises
114(3)
6 Printed antennas
117(23)
6.1 Introduction
117(1)
6.2 Different types of printed radiating elements
118(3)
6.3 Field analysis methods
121(9)
6.3.1 Methods of analysis of printed antennas
122(1)
6.3.2 The cavity method
122(3)
6.3.3 Application to a rectangular patch
125(3)
6.3.4 Application to a circular patch
128(2)
6.4 Input impedance, bandwidth and radiation pattern
130(7)
6.4.1 Input impedance
130(1)
6.4.2 Bandwidth
131(3)
6.4.3 Radiation pattern
134(1)
6.4.4 Polarization
134(3)
Further reading
137(1)
Exercises
138(2)
7 Large antennas and microwave antennas
140(67)
7.1 Introduction
140(2)
7.2 Structures and applications
142(10)
7.2.1 Structures
142(3)
7.2.2 External characteristics required in applications
145(7)
7.3 Fundamental propagation laws
152(18)
7.3.1 Wavefronts
152(1)
7.3.2 The Huygens-Fresnel principle of wave propagation
153(1)
7.3.3 Stationary phase principle
154(3)
7.3.4 Geometrical optics ray theory
157(5)
7.3.5 Ray theory in quasi-homogeneous media
162(8)
7.4 Antennas as radiating apertures
170(30)
7.4.1 Antenna radiation and equivalent aperture method
170(1)
7.4.2 Examples of microwave antennas and equivalent apertures
171(3)
7.4.3 Far field radiation from an aperture
174(5)
7.4.4 Examples of radiating apertures
179(7)
7.4.5 Polarization of the radiated field: case where the field in the aperture has the characteristic of a plane wave
186(5)
7.4.6 Geometrical properties of the Huygens coordinates
191(2)
7.4.7 Aperture radiation in the near field
193(3)
7.4.8 Gain factor of a radiating aperture
196(4)
Appendix 7A Deduction of the Huygens-Fresnel principle from the Kirchhoff integral
200(1)
Further reading
201(1)
Exercises
202(5)
8 Primary feeds
207(37)
8.1 General properties
207(16)
8.1.1 Introduction
207(1)
8.1.2 General characteristics of primary feeds
208(7)
8.1.3 Radiation from radially-symmetric structures
215(6)
8.1.4 Primary aperture in an incident field
221(2)
8.2 Horns
223(6)
8.2.1 General properties
223(1)
8.2.2 Small flare angle horns and open-ended guides
224(1)
8.2.3 Flared horns
225(1)
8.2.4 Multimode horns
226(3)
8.3 Hybrid modes and corrugated horns
229(11)
8.3.1 Circular aperture radiating a pure polarization
229(1)
8.3.2 Search for hybrid mode waves
229(6)
8.3.3 Radiation pattern
235(5)
Further reading
240(1)
Exercises
241(3)
9 Axially symmetric systems
244(53)
9.1 Introduction
244(1)
9.2 Symmetry properties -- propagation of polarization, radiation patterns
245(2)
9.3 Principal surface
247(3)
9.3.1 Definition
247(1)
9.3.2 Pupil -- aperture angle -- focal length
248(1)
9.3.3 Equivalent aperture of the system
249(1)
9.4 Transfer function
250(2)
9.5 System gain
252(6)
9.5.1 General expression
252(1)
9.5.2 Expression obtained from the primary gain g' and the transfer function
253(1)
9.5.3 Effect of various factors in the gain function
253(2)
9.5.4 Concept of optimal primary directivity
255(3)
9.6 Radiation patterns
258(4)
9.6.1 Equivalent aperture illumination
258(1)
9.6.2 Axisymmetric primary pattern with pure polarization
258(2)
9.6.3 Effect of blockage
260(2)
9.7 Aberrations in axially-symmetric systems
262(5)
9.7.1 Introduction
262(1)
9.7.2 Main aberrations in the defocusing plane
262(5)
9.8 Axially symmetric systems considered in reception
267(12)
9.8.1 Effect of transfer function
267(2)
9.8.2 Diffraction in the vicinity of the focus F of an element dS' of a spherical wave S'
269(1)
9.8.3 Analysis of a diffraction pattern -- contribution of an elementary crown of the spherical wave -- hybrid waves
270(1)
9.8.4 Axial field
271(1)
9.8.5 Transverse distribution of the diffracted field in the focal plane
272(1)
9.8.6 Axially-symmetric systems with a small aperture XXX(0)
273(2)
9.8.7 Constant transfer function
275(2)
9.8.8 Non-constant transfer function
277(1)
9.8.9 General case: system with a very large aperture
278(1)
9.9 System considered in reception: transfer of the energy contained in the diffraction pattern to the primary aperture
279(7)
9.9.1 Diffraction pattern produced around the focus by an incident non-axial plane wave
279(2)
9.9.2 Radiation pattern of the system associated with a given primary aperture
281(1)
9.9.3 Examples of applications
282(1)
9.9.4 Axial gain of an axially-symmetric system -- effect of the diameter of the primary aperture
283(3)
9.10 Radiation in the Fresnel zone of a Gaussian illumination -- application to the transport of energy by radiation (Gobeau's waves)
286(2)
Further reading
288(1)
Exercises
289(8)
10 Focused systems
297(66)
10.1 Introduction
297(1)
10.2 The Cassegrain antenna
298(19)
10.2.1 Introduction
298(1)
10.2.2 Geometry
299(2)
10.2.3 Equivalent primary feed
301(1)
10.2.4 Principal surface
302(1)
10.2.5 Cassegrain with shaped reflectors
303(3)
10.2.6 Diffraction pattern of the subreflector
306(6)
10.2.7 Blockage by the subreflector
312(4)
10.2.8 Schwartzschild aplanetic reflector
316(1)
10.3 Tracking systems
317(32)
10.3.1 Introduction
317(2)
10.3.2 General characteristics of radar echoes
319(5)
10.3.3 Conical scanning
324(8)
10.3.4 `Monopulse' antennas
332(17)
10.3.5 Beacon tracking
349(1)
10.4 Non axially-symmetric systems
349(11)
10.4.1 Offset reflector
349(4)
10.4.2 Shaped reflectors -- pattern synthesis
353(7)
Further reading
360(1)
Exercises
361(2)
11 Arrays
363(88)
11.1 Introduction
363(5)
11.1.1 Phased arrays
364(1)
11.1.2 Bandwidth -- use of delay lines -- subarrays
364(2)
11.1.3 Active arrays
366(2)
11.2 General structure of a phased array (examples)
368(10)
11.2.1 General structure
368(5)
11.2.2 Examples of array structures
373(5)
11.3 Linear array theory
378(7)
11.3.1 Basic equation -- array factor
378(1)
11.3.2 Uniform illumination and constant phase gradient
379(3)
11.3.3 Half-power beamwidth
382(1)
11.3.4 Condition to prevent grating lobes from occurring in the scanning region
383(1)
11.3.5 Effect of weighting of the array illumination function
384(1)
11.3.6 Effect of element directivity
384(1)
11.4 Variation of gain as a function of direction
385(9)
11.4.1 Array operating on transmit
385(2)
11.4.2 Array on receive
387(1)
11.4.3 Array active reflection coefficient -- mutual coupling
388(1)
11.4.4 Blind angle phenomenon
389(3)
11.4.5 Case where the element spacing is relatively large
392(1)
11.4.6 Study of an array of open-ended guides considered as a periodic structure
392(2)
11.5 Effects of phase quantization
394(6)
11.5.1 Case where all phase shifters are fed in phase
394(2)
11.5.2 Effects of quantization when the phase origin varies from one phase shifter to another
396(4)
11.6 Frequency-scanned arrays
400(2)
11.7 Analogue beamforming matrices
402(16)
11.7.1 Introduction
402(1)
11.7.2 General properties of multi-port networks
403(2)
11.7.3 Beamforming applications
405(3)
11.7.4 Examples of matrices
408(6)
11.7.5 Non-orthogonal directional beams
414(4)
11.8 Further topics
418(22)
11.8.1 Active modules
418(4)
11.8.2 Digital beamforming
422(3)
11.8.3 Circular, cylindrical and conformal arrays
425(9)
11.8.4 Sparse and random arrays
434(6)
Appendix 11A Comparison of linear and circular arrays
440(7)
Further reading
447(1)
Exercises
448(3)
12 Fundamentals of polarimetry
451(49)
12.1 Introduction
451(4)
12.1.1 Application of polarimetry in radar and telecommunications
451(2)
12.1.2 Some historical references
453(1)
12.1.3 Basics
453(2)
12.2 Fully polarized waves
455(12)
12.2.1 Definition
455(1)
12.2.2 Algebraic representation of elliptical polarization
456(1)
12.2.3 Normalized Cartesian coordinate system
457(1)
12.2.4 Base of circular polarizations
458(2)
12.2.5 Polarization ratio
460(1)
12.2.6 Polarization diagram
461(3)
12.2.7 Polarization coupling to the receiving antenna
464(3)
12.3 Partially polarized waves
467(12)
12.3.1 Definition and physical origin
467(2)
12.3.2 Coherence matrix
469(2)
12.3.3 Completely unpolarized wave
471(1)
12.3.4 Completely polarized wave
472(1)
12.3.5 Stokes parameters
473(1)
12.3.6 Decomposition of a partially polarized wave
474(1)
12.3.7 Geometrical interpretation of the preceding results: Stokes parameters and Poincare sphere
474(2)
12.3.8 Polarization coupling and Stokes vectors
476(3)
12.4 Polarimetric representation of radar targets
479(11)
12.4.1 Introduction
479(1)
12.4.2 Sinclair diffraction matrix
479(11)
12.5 Partially polarized waves: The Mueller Matrix
490(4)
12.5.1 The Mueller matrix
490(1)
12.5.2 Application example
490(2)
12.5.3 Examples of responses to different incident polarizations
492(2)
12.6 Polarizers and polarization separators for telecommunications antennas and polarimetric radars
494(5)
12.6.1 Introduction
494(1)
12.6.2 Non-symmetrical polarization separator
494(1)
12.6.3 Semi-symmetrical polarization separator
495(1)
12.6.4 Symmetrical polarization separator (turnstile)
496(1)
12.6.5 Dielectric vane polarizer
497(2)
Further reading
499(1)
Exercises
499(1)
13 Antennas and signal theory
500(28)
13.1 Introduction
500(1)
13.2 Equivalence of an aperture and a spatial frequency filter
501(6)
13.2.1 Concept of spatial frequency
501(1)
13.2.2 Consequences of the limitation of the aperture dimensions on the properties of the radiation characteristic function
502(4)
13.2.3 Consequences of the limitation of the aperture dimensions on the `gain' function of the antenna
506(1)
13.3 Synthesis of an aperture to radiate a given radiation pattern
507(11)
13.3.1 Statement of problem
507(2)
13.3.2 Generalization of the approximation method
509(2)
13.3.3 Use of sampling methods
511(2)
13.3.4 Role of phase -- stationary phase method
513(4)
13.3.5 Pattern synthesis for a focusing system
517(1)
13.4 Superdirective antennas
518(2)
13.4.1 Introduction
518(1)
13.4.2 Role of the `invisible' domain of radiation
518(2)
13.5 The antenna as a filter of angular signals
520(5)
13.5.1 Introduction
520(1)
13.5.2 Optical or microwave imaging and linear filters
521(1)
13.5.3 False echoes and resolving power
522(1)
13.5.4 Case where the antenna is treated as an aperture
523(1)
13.5.5 Spectrum of fixed echoes of a rotating radar
524(1)
Further reading
525(1)
Exercises
526(2)
14 Signal processing antennas
528(72)
14.1 Introduction
528(1)
14.2 Synthetic antennas in radar and sonar
529(8)
14.2.1 Principles of synthetic antennas
529(1)
14.2.2 Synthetic receive array with non-directional beam
530(1)
14.2.3 Synthetic receive array with multiple beams
531(1)
14.2.4 Examples of spatio-temporal coding
532(5)
14.3 Imaging of coherent sources
537(7)
14.3.1 Introduction
537(1)
14.3.2 Two-source distribution
538(1)
14.3.3 Estimation of the elevation angle of a low-altitude target above a reflecting plane
539(2)
14.3.4 Effect of noise: a posteriori probabilities and decision theory
541(3)
14.4 Imaging of incoherent sources
544(10)
14.4.1 Introduction
544(1)
14.4.2 Conditions for incoherence
544(1)
14.4.3 Multiplicative arrays
545(3)
14.4.4 Relationship between an angular distribution of incoherent sources and the observed field: the Van Cittert-Zernicke Theorem
548(3)
14.4.5 Sampling of the coherence function
551(1)
14.4.6 Measurement of the coefficients of correlation or covariance -- C(n-n')
551(2)
14.4.7 The covariance matrix
553(1)
14.5 High resolution imagery and the maximum entropy method
554(9)
14.5.1 Introduction
554(1)
14.5.2 Classical method of `correlogram'
555(1)
14.5.3 Method of Maximum Entropy
556(1)
14.5.4 Estimation of T under conditions of Maximum Entropy
556(1)
14.5.5 Factorization of T(XXX) -- properties
557(1)
14.5.6 Determination of the coefficients a(n) in equation (14.71)
558(2)
14.5.7 Generalization: ARMA model
560(1)
14.5.8 Numerical example
560(1)
14.5.9 Minimum redundance arrays
561(2)
14.6 Other methods of spectral estimation
563(7)
14.6.1 Introduction
563(1)
14.6.2 The MUSIC algorithm
564(3)
14.6.3 Other superresolution algorithms
567(2)
14.6.4 Superresolution with circular arrays
569(1)
14.7 Spatial filtering
570(20)
14.7.1 Introduction
570(1)
14.7.2 What is an adaptive array?
570(1)
14.7.3 Simple example: two-element array
571(3)
14.7.4 Howells-Applebaum correlation loop
574(3)
14.7.5 Minimum noise criterion
577(1)
14.7.6 Effect of internal receiver noise
578(1)
14.7.7 Time-domain behaviour of the correlation loop
579(4)
14.7.8 Multiple correlation loops: the coherent sidelobe canceller (CSLC)
583(2)
14.7.9 The optimum array
585(3)
14.7.10 Interpretation
588(1)
14.7.11 Digital implementation
588(2)
Appendix 14A Entropy and probability
590(7)
Further reading
597(1)
Exercises
598(2)
15 Antenna measurements
600(26)
15.1 Introduction
600(1)
15.2 Gain measurements
601(3)
15.2.1 Comparison with a standard-gain horn
601(1)
15.2.2 Two-antenna measurement
601(1)
15.2.3 Three-antenna measurement
602(1)
15.2.4 Extrapolation
602(2)
15.3 Radiation pattern measurements
604(13)
15.3.1 Anechoic chambers and far-field ranges
604(4)
15.3.2 Compact ranges
608(2)
15.3.3 Wavefront quality
610(1)
15.3.4 Near-field techniques
611(2)
15.3.5 Other techniques
613(3)
15.3.6 Polarization
616(1)
15.4 Time-domain gating
617(3)
15.4.1 Principles
617(2)
15.4.2 Limitations
619(1)
15.5 Antenna noise temperature and G/T
620(2)
15.5.1 Measurement of antenna noise temperature
620(1)
15.5.2 Direct measurement of G/T using solar noise
620(2)
15.6 Impedance and bandwidth
622(2)
Further reading
624(1)
Exercises
625(1)
Index 626