Muutke küpsiste eelistusi

Aortic Dissection: Simulation Tools for Disease Management and Understanding Softcover reprint of the original 1st ed. 2018 [Pehme köide]

  • Formaat: Paperback / softback, 179 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 85 Illustrations, color; 7 Illustrations, black and white; XXIX, 179 p. 92 illus., 85 illus. in color., 1 Paperback / softback
  • Sari: Springer Theses
  • Ilmumisaeg: 04-Jun-2019
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319858866
  • ISBN-13: 9783319858869
Teised raamatud teemal:
  • Pehme köide
  • Hind: 95,02 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 111,79 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 179 pages, kõrgus x laius: 235x155 mm, kaal: 454 g, 85 Illustrations, color; 7 Illustrations, black and white; XXIX, 179 p. 92 illus., 85 illus. in color., 1 Paperback / softback
  • Sari: Springer Theses
  • Ilmumisaeg: 04-Jun-2019
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3319858866
  • ISBN-13: 9783319858869
Teised raamatud teemal:
This thesis addresses computation fluid dynamics modelling of aortic dissection (AD), in order to generate in silico diagnostic information and assess ‘virtual surgery’ outcomes. The thesis introduces several important advances in the modelling of aortic dissection and lays essential groundwork for further development of this technology. The work thesis represents a unique and major step forward in our understanding of AD using a patient-specific, systematic and coherent simulation approach, and is currently the most advanced work available on AD.
1 Introduction
1(38)
1.1 Motivation and Background
1(15)
1.1.1 Introduction to the Circulatory System
2(3)
1.1.2 Aortic Dissection
5(11)
1.2 Numerical Modelling of the Cardiovascular System
16(11)
1.2.1 Background
16(1)
1.2.2 Approaches to Modelling Aortic Dissection
17(8)
1.2.3 Objectives of Aortic Dissection Modelling
25(2)
1.3 Objectives of the Present Research
27(1)
1.4 Outline of the Thesis
28(1)
References
29(10)
2 Computational Methods for Patient-Specific Modelling
39(30)
2.1 Computational Fluid Dynamics
39(4)
2.1.1 Governing Equations
40(1)
2.1.2 Numerical Implementation
41(2)
2.2 Building the Fluid Domain
43(8)
2.2.1 Introduction to Clinical Imaging
43(1)
2.2.2 3D Domain Extraction
44(4)
2.2.3 Geometry
48(3)
2.3 Meshing
51(1)
2.4 Dynamic Boundary Conditions
52(10)
2.4.1 Analogue Equations
52(1)
2.4.2 Two-element Windkessel Model
53(1)
2.4.3 Three-element Windkessel Model
54(2)
2.4.4 Four-element Windkessel Models
56(1)
2.4.5 Compound Windkessel Models
57(1)
2.4.6 Parameters for Windkessel Models
57(2)
2.4.7 Comparison of Zero-Pressure and Windkessel Boundary Conditions for Aortic Dissection
59(2)
2.4.8 Comparison of Flow-Split and Windkessel Boundary Conditions for Aortic Dissection
61(1)
2.5 Finite Element Modelling
62(3)
2.5.1 Vessel Wall Reconstruction
63(1)
2.5.2 Material Properties
63(2)
References
65(4)
3 Haemodynamics of a Dissected Aorta
69(32)
3.1 Introduction
69(1)
3.2 Methodology
70(5)
3.2.1 Boundary Conditions and Data Assimilation Method
71(4)
3.3 Results
75(9)
3.3.1 Flow Characteristics
75(4)
3.3.2 Pressure Distribution
79(2)
3.3.3 Wall Shear Stress
81(3)
3.4 Discussion
84(3)
3.4.1 Limitations
85(2)
3.5 Sensitivity of the Windkessel Parameters
87(2)
3.6 Mesh Sensitivity
89(6)
3.7 Effect of Turbulence Modelling
95(2)
3.8 Conclusions
97(1)
References
97(4)
4 Effectiveness of Aortic Dissection Treatments via Virtual Stenting
101(26)
4.1 Introduction
101(2)
4.2 Methodology
103(6)
4.2.1 Boundary Conditions
107(2)
4.3 Results
109(8)
4.3.1 Velocity and Flow Rates
109(2)
4.3.2 Pressure
111(2)
4.3.3 Kinetic Energy
113(1)
4.3.4 Wall Shear Stress
113(4)
4.4 Discussion
117(3)
4.5 Mesh Sensitivity
120(3)
4.6 Conclusion
123(1)
References
124(3)
5 Role of Vessel Wall Motion in Aortic Dissection
127(28)
5.1 Introduction
127(2)
5.2 Methods
129(3)
5.2.1 Geometry
129(1)
5.2.2 Boundary Conditions
130(2)
5.3 Results
132(11)
5.3.1 Wall Displacement
132(1)
5.3.2 Cross-Sectional Area
132(2)
5.3.3 Wall Stress
134(3)
5.3.4 Velocity Distribution
137(1)
5.3.5 Flow Distribution
137(2)
5.3.6 Pressure Distribution
139(1)
5.3.7 Proximal and Distal False Lumen
139(2)
5.3.8 Wall Shear Stress
141(2)
5.4 Mesh Sensitivity and Efficiency
143(4)
5.5 Discussion
147(3)
5.6 Conclusions
150(1)
References
150(5)
6 Conclusions and Future Work
155(6)
6.1 Introduction
155(1)
6.2 Main Contributions
156(1)
6.3 Summary of Main Findings
156(3)
6.4 Significance of this Study
159(1)
6.5 Future Work
159(2)
Appendix A Sample Mesh Images 161(4)
Appendix B Detailed Mesh Sensitivity Analysis for Virtual-Stenting Simulations 165