Muutke küpsiste eelistusi

Applied Deep Learning: Tools, Techniques, and Implementation 2022 ed. [Pehme köide]

  • Formaat: Paperback / softback, 341 pages, kõrgus x laius: 235x155 mm, kaal: 569 g, 1 Illustrations, black and white; XXVII, 341 p. 1 illus., 1 Paperback / softback
  • Sari: Computational Intelligence Methods and Applications
  • Ilmumisaeg: 20-Jul-2023
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031044223
  • ISBN-13: 9783031044229
Teised raamatud teemal:
  • Pehme köide
  • Hind: 48,70 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 57,29 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 341 pages, kõrgus x laius: 235x155 mm, kaal: 569 g, 1 Illustrations, black and white; XXVII, 341 p. 1 illus., 1 Paperback / softback
  • Sari: Computational Intelligence Methods and Applications
  • Ilmumisaeg: 20-Jul-2023
  • Kirjastus: Springer International Publishing AG
  • ISBN-10: 3031044223
  • ISBN-13: 9783031044229
Teised raamatud teemal:

This book focuses on the applied aspects of artificial intelligence using enterprise frameworks and technologies. The book is applied in nature and will equip the reader with the necessary skills and understanding for delivering enterprise ML technologies. It will be valuable for undergraduate and postgraduate students in subjects such as artificial intelligence and data science, and also for industrial practitioners engaged with data analytics and machine learning tasks. The book covers all of the key conceptual aspects of the field and provides a foundation for all interested parties to develop their own artificial intelligence applications.

Part 1 Introduction and Overview.- Introduction.- Part 2 Foundations of
Mashine Learning.- Fundamentals of Machine Learning.- Supervised Learning.-
Un-Supervised Learning.- Performance Evaluation Metrics.- Part 3 Deep
Learning Concepts and Techniques.-  Introduction to Deep Learning.- Image
Classification and Object Detection.- Deep Learning Techniques for Time
Series Modelling.- Natural Language Processing.- Deep Generative Models.-
Deep Reinforcement Learning.- Part 4 Enterprise Machine Learning.-
Accelerated Machine Learning.- Deploying and Hosting Machine Learning
Models.- Enterprise Machine Learning Serving. 
Prof. Paul Fergus is a Professor in Machine Learning and Dr. Carl Chambers is a Senior Lecturer in the Dept. of Computer Science of Liverpool John Moores University. Their teaching responsibilities include Machine Learning and Data Science. Their research interest includes Applied Machine Learning, Computer Vision, Signal Processing, and Pattern Recognition.