|
|
xi | |
|
|
xii | |
Preface |
|
xiii | |
Acknowledgments |
|
xv | |
|
1 Review of estimation and hypothesis tests |
|
|
1 | (11) |
|
|
1 | (1) |
|
1.2 Population and sample |
|
|
1 | (1) |
|
|
2 | (1) |
|
1.4 Test statistic and its sampling distribution |
|
|
2 | (2) |
|
1.5 Type I and Type II errors |
|
|
4 | (1) |
|
|
4 | (1) |
|
|
4 | (1) |
|
|
5 | (3) |
|
1.9 Properties of estimators |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
10 | (2) |
|
2 Simple linear regression models |
|
|
12 | (1) |
|
|
12 | (1) |
|
2.1.1 A hypothetical example |
|
|
12 | (1) |
|
2.1.2 Population regression line |
|
|
13 | (1) |
|
2.1.3 Stochastic specification for individuals |
|
|
14 | (1) |
|
2.2 Ordinaty least squares estimation |
|
|
14 | (3) |
|
2.3 Coefficient of determination (R2) |
|
|
17 | (3) |
|
2.3.1 Definition and interpretation of R2 |
|
|
17 | (1) |
|
2.3.2 Application of R2: Morck, Yeung and Yu (2000) |
|
|
18 | (1) |
|
2.3.3 Application of R2: Dechow (1994) |
|
|
19 | (1) |
|
|
20 | (2) |
|
2.4.1 Testing H0: β1 = 0 vs. H1: β ≠ 0 |
|
|
20 | (2) |
|
2.4.2 Testing H0: β = c vs. H1: β1 ≠ c (c is a constant) |
|
|
22 | (1) |
|
|
22 | (5) |
|
|
22 | (4) |
|
2.5.2 Gauss-Markov Theorem |
|
|
26 | (1) |
|
2.5.3 Consistency of the OLS estimators |
|
|
26 | (1) |
|
2.5.4 Remarks on model specification |
|
|
27 | (1) |
|
|
27 | (4) |
|
2.6.1 Log-log linear models |
|
|
28 | (2) |
|
|
30 | (1) |
|
2.7 Effects of changing measurement units and levels |
|
|
31 | (2) |
|
2.7.1 Changes of measurement units |
|
|
31 | (2) |
|
2.7.2 Changes in the levels |
|
|
33 | (1) |
|
|
33 | (1) |
|
|
34 | (4) |
|
|
38 | (1) |
|
Appendix 2 How to use EViews, SAS and R |
|
|
39 | (4) |
|
3 Multiple linear regression models |
|
|
43 | (26) |
|
|
43 | (2) |
|
3.2 Ordinary least squares estimation |
|
|
45 | (2) |
|
3.2.1 Obtaining the OLS estimates |
|
|
45 | (1) |
|
3.2.2 Interpretation of regression coefficients |
|
|
46 | (1) |
|
3.3 Estimation bias due to correlated-omitted variables |
|
|
47 | (1) |
|
3.4 R2 and the adjusted R2 |
|
|
48 | (1) |
|
3.4.1 Definition and interpretation of R2 |
|
|
48 | (1) |
|
|
48 | (1) |
|
|
49 | (1) |
|
|
50 | (3) |
|
3.6.1 General-to-simple approach |
|
|
50 | (2) |
|
3.6.2 A comment on hypothesis testing |
|
|
52 | (1) |
|
3.6.3 Guidelines for model selection |
|
|
53 | (1) |
|
|
53 | (6) |
|
|
53 | (2) |
|
3.7.2 McAlister, Srinivasan and Kim (2007) |
|
|
55 | (1) |
|
3.7.3 Collins, Pincus and Xie (1999) |
|
|
56 | (1) |
|
3.7.4 Angrist and Pixchke (2009, pp. 64-68) |
|
|
57 | (2) |
|
|
59 | (1) |
|
|
59 | (5) |
|
|
64 | (1) |
|
Appendix 3A Hypothesis test using EViews and SAS |
|
|
65 | (2) |
|
Appendix 3B Geometric interpretation of the OLS regression equation |
|
|
67 | (2) |
|
4 Dummy explanatory variables |
|
|
69 | (1) |
|
4.1 Dummy variables for different intercepts |
|
|
69 | (20) |
|
4.1.1 When there are two categories |
|
|
69 | (3) |
|
4.1.2 When there are more than two categories |
|
|
72 | (1) |
|
4.1.3 Interpretation when the dependent variable is in logarithm |
|
|
72 | (1) |
|
4.1.4 Application: Mitton (2002) |
|
|
73 | (1) |
|
4.1.5 Application: Hakes and Sauer (2006) |
|
|
74 | (3) |
|
4.2 Dummy variables for different slopes |
|
|
77 | (3) |
|
4.2.1 Use of a cross product with a dummy variable |
|
|
77 | (2) |
|
4.2.2 Application: Basu (1997) |
|
|
79 | (1) |
|
4.3 Structural stability of regression models |
|
|
80 | (1) |
|
4.3.1 Test by splitting the sample (Chow test) |
|
|
80 | (1) |
|
4.3.2 Test using dummy variables |
|
|
80 | (1) |
|
4.4 Piecewise linear regression models |
|
|
81 | (2) |
|
4.4.1 Using dummy variables |
|
|
81 | (1) |
|
4.4.2 Using quantitative variables only |
|
|
81 | (1) |
|
4.4.3 Morek, Shleifer and Vishny (1988) |
|
|
82 | (1) |
|
|
83 | (1) |
|
|
83 | (3) |
|
|
86 | (1) |
|
Appendix 4 Dummy variables in KViews and SAS |
|
|
87 | (2) |
|
5 More on multiple regression analysis |
|
|
89 | (20) |
|
|
89 | (3) |
|
5.1.1 Consequences of multicollinearity |
|
|
91 | (1) |
|
|
91 | (1) |
|
|
92 | (2) |
|
5.2.1 Consequences of heteroscedaslicity |
|
|
92 | (1) |
|
5.2.2 Testing for heteroscedaslicity |
|
|
92 | (1) |
|
5.2.3 Application: Milton (2002) |
|
|
93 | (1) |
|
5.3 More on functional form |
|
|
94 | (2) |
|
|
94 | (1) |
|
|
94 | (2) |
|
|
96 | (4) |
|
5.4.1 Bharadwaj, Tuli and Bonfrer (2011) |
|
|
96 | (2) |
|
5.4.2 Ghosh and Moon (2005) |
|
|
98 | (1) |
|
5.4.3 Arora and Vamvakidis (2005) |
|
|
99 | (1) |
|
|
100 | (1) |
|
|
100 | (5) |
|
|
105 | (1) |
|
Appendix 5 Testing and correcting for heteroscedaslicity |
|
|
106 | (3) |
|
6 Endogeneity and two-stage least squares estimation |
|
|
109 | (26) |
|
|
110 | (3) |
|
6.1.1 Measurement errors in the dependent variable |
|
|
111 | (1) |
|
6.1.2 Measurement errors in an explanatory variable |
|
|
111 | (2) |
|
|
113 | (2) |
|
|
113 | (1) |
|
6.2.2 Inclusion of irrelevant variables |
|
|
114 | (1) |
|
6.2.3 A guideline for model selection |
|
|
114 | (1) |
|
6.3 Two-stage least squares estimation |
|
|
115 | (2) |
|
6.4 Generalized method of moments (GMM) |
|
|
117 | (1) |
|
|
118 | (1) |
|
6.5 Tests for endogeneity |
|
|
118 | (1) |
|
|
118 | (1) |
|
6.5.2 Hausman (1978) test |
|
|
118 | (1) |
|
|
119 | (3) |
|
6.6.1 Dechow, Sloan and Sweeney (1995) |
|
|
119 | (2) |
|
6.6.2 Beaver, Lambert and Ryan (1987) |
|
|
121 | (1) |
|
6.6.3 Himmelberg and Petersen (1994) |
|
|
122 | (1) |
|
|
122 | (1) |
|
|
123 | (4) |
|
|
127 | (2) |
|
Appendix 6A Estimation of 2SLS and GMM using EViews and SAS |
|
|
129 | (3) |
|
Appendix 6B Hausman test for endogeneily using EViews and SAS |
|
|
132 | (3) |
|
|
135 | (22) |
|
|
135 | (1) |
|
|
136 | (3) |
|
7.2.1 Using time dummies (for b) |
|
|
136 | (1) |
|
7.2.2 Using cross-section dummies (for aj |
|
|
137 | (1) |
|
7.2.3 Applying transformations |
|
|
137 | (2) |
|
|
139 | (6) |
|
7.3.1 Cormvell and Trumbull (1994) |
|
|
139 | (2) |
|
7.3.2 Blackburn and Neumark (1992) |
|
|
141 | (1) |
|
|
142 | (1) |
|
7.3.4 Tuli, Bharadwaj and Kohli (2010) |
|
|
142 | (3) |
|
|
145 | (2) |
|
7.5 Fixed vs. random effects models |
|
|
147 | (1) |
|
|
147 | (1) |
|
|
148 | (3) |
|
|
151 | (2) |
|
Appendix 7A Controlling for fixed effects using E Views and SAS |
|
|
153 | (2) |
|
Appendix 7B Is it always possible to control for unit-specific effects? |
|
|
155 | (2) |
|
8 Simultaneous equations models |
|
|
157 | (16) |
|
|
157 | (1) |
|
|
158 | (2) |
|
8.2.1 Two-stage least squares (2SLS) |
|
|
158 | (1) |
|
8.2.2 Three-stage least squares (3SLS) |
|
|
159 | (1) |
|
8.2.3 Generalized method of moments (GMM) |
|
|
160 | (1) |
|
8.2.4 Full-information maximum likelihood (FIML) |
|
|
160 | (1) |
|
8.3 Identification problem |
|
|
160 | (2) |
|
|
162 | (5) |
|
8.4.1 Cornwell and Trumbull (1994) |
|
|
162 | (1) |
|
8.4.2 Beaver, McAnally and Stinson (1997) |
|
|
163 | (2) |
|
|
165 | (1) |
|
8.4.4 Datla and Agarwal (2004) |
|
|
165 | (2) |
|
|
167 | (1) |
|
|
167 | (2) |
|
|
169 | (2) |
|
Appendix 8 Estimation of simultaneous equations models using EViews and SAS |
|
|
171 | (2) |
|
9 Vector autoregressive (VAR) models |
|
|
173 | (30) |
|
|
173 | (1) |
|
9.2 Estimation of VAR models |
|
|
174 | (1) |
|
9.3 Granger-causality lest |
|
|
175 | (3) |
|
|
178 | (1) |
|
9.5 Impulse-response analysis |
|
|
179 | (2) |
|
9.6 Variance decomposition analysis |
|
|
181 | (2) |
|
|
183 | (8) |
|
9.7.1 Stock and Watson (2001) |
|
|
183 | (3) |
|
9.7.2 Zhang, Fan. Tsai and Wei (2008) |
|
|
186 | (1) |
|
9.7.3 Trusov, Bucklin and Pausels (2009) |
|
|
187 | (4) |
|
|
191 | (1) |
|
|
191 | (3) |
|
|
194 | (1) |
|
Appendix 9 Estimation and analysis of VAR models using SAS |
|
|
195 | (8) |
|
10 Autocorrelation and ARCH/GARCH |
|
|
203 | (27) |
|
|
203 | (5) |
|
10.1.1 Consequences of autocorrelation |
|
|
203 | (3) |
|
10.1.2 Test for autocorrelation |
|
|
206 | (2) |
|
10.1.3 Estimation of autocorrelation |
|
|
208 | (1) |
|
|
208 | (7) |
|
|
209 | (3) |
|
10.2.2 GARCH (Generalized ARCH) model |
|
|
212 | (2) |
|
10.2.3 TGARCH (Threshold GARCH) model |
|
|
214 | (1) |
|
10.2.4 EG ARCH (Exponential GARCH) model |
|
|
214 | (1) |
|
|
215 | (1) |
|
|
215 | (4) |
|
10.3.1 Wang, Salin and Leatham (2002) |
|
|
215 | (1) |
|
10.3.2 Zhang, Fan, Tsai and Wei (2008) |
|
|
216 | (2) |
|
10.3.3 Value at Risk (VaR) |
|
|
218 | (1) |
|
|
219 | (1) |
|
|
220 | (2) |
|
|
222 | (1) |
|
Appendix 10A Test and estimation of autocorrelation using EViews and SAS |
|
|
223 | (6) |
|
Appendix 10B Test and estimation of ARCH/GARCH models using SAS |
|
|
229 | (1) |
|
11 Unit root, cointegration and error correction model |
|
|
230 | (32) |
|
|
230 | (2) |
|
11.2 Stationary and nonstationary time series |
|
|
232 | (1) |
|
11.3 Deterministic and stochastic trends |
|
|
233 | (1) |
|
|
234 | (3) |
|
11.4.1 Dickey-Fuller (DF) test |
|
|
234 | (1) |
|
11.4.2 Augmented Dickey-Fuller (ADF) test |
|
|
235 | (1) |
|
11.4.3 Example: unit root test using EViews |
|
|
235 | (2) |
|
|
237 | (5) |
|
11.5.1 Tests for cointegration |
|
|
237 | (1) |
|
11.5.2 Vector error correction models (VECMs) |
|
|
237 | (1) |
|
11.5.3 Example: test and estimation of cointegration using EViews |
|
|
238 | (4) |
|
|
242 | (5) |
|
11.6.1 Stock and Watson (1988) |
|
|
242 | (1) |
|
11.6.2 Baillie and Selover (1987) |
|
|
243 | (1) |
|
|
243 | (2) |
|
|
245 | (2) |
|
|
247 | (1) |
|
|
247 | (1) |
|
|
247 | (3) |
|
|
250 | (2) |
|
Appendix 11A Unit root lest using HAS |
|
|
252 | (2) |
|
Appendix 11B Johansen lest for cointegration |
|
|
254 | (1) |
|
Appendix 11C Vector error correction modeling (VECM): test and estimation using SAS |
|
|
255 | (7) |
|
12 Qualitative and limited dependent variable models |
|
|
262 | (31) |
|
12.1 Linear probability model |
|
|
262 | (1) |
|
|
263 | (4) |
|
12.2.1 Interpretation of the coefficients |
|
|
264 | (2) |
|
12.2.2 Measuring the goodness-of-fil |
|
|
266 | (1) |
|
|
267 | (3) |
|
12.3.1 Interpretation of the coefficients |
|
|
267 | (2) |
|
|
269 | (1) |
|
12.3.3 Adjustment for unequal sampling rales: Maddala (1991), Palepu (1986) |
|
|
269 | (1) |
|
|
270 | (3) |
|
|
270 | (1) |
|
12.4.2 Applications of the Tobil model |
|
|
271 | (1) |
|
12.4.3 Estimation using FViews and SAS |
|
|
272 | (1) |
|
|
273 | (6) |
|
12.5.1 Self-selection model |
|
|
274 | (2) |
|
12.5.2 Choice-based Tobil model |
|
|
276 | (1) |
|
12.5.3 Estimation using HAH |
|
|
277 | (2) |
|
|
279 | (7) |
|
|
279 | (1) |
|
12.6.2 Leung, Daouk and Chen (2000) |
|
|
280 | (1) |
|
|
281 | (1) |
|
12.6.4 Robinson and Min (2002) |
|
|
281 | (3) |
|
12.6.5 Leuz and Verrecchia (2000) |
|
|
284 | (2) |
|
|
286 | (1) |
|
|
286 | (4) |
|
|
290 | (1) |
|
Appendix 12 Maximum likelihood estimation (MLE) |
|
|
291 | (2) |
Index |
|
293 | |