Preface |
|
xi | |
Acknowledgments |
|
xv | |
|
Introduction Regression Analysis |
|
|
1 | (8) |
|
|
1 | (2) |
|
Matrix Form of the Multiple Regression Model |
|
|
3 | (1) |
|
Basic Theory of Least Squares |
|
|
3 | (2) |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
6 | (1) |
|
Hypothesis Testing and Confidence Intervals |
|
|
7 | (1) |
|
|
8 | (1) |
|
Regression Analysis Using Proc IML and Proc Reg |
|
|
9 | (18) |
|
|
9 | (1) |
|
Regression Analysis Using Proc IML |
|
|
9 | (3) |
|
Analyzing the Data Using Proc Reg |
|
|
12 | (2) |
|
Extending the Investment Equation Model to the Complete Data Set |
|
|
14 | (1) |
|
|
15 | (1) |
|
Correlation Between Variables |
|
|
16 | (2) |
|
Predictions of the Dependent Variable |
|
|
18 | (3) |
|
|
21 | (3) |
|
|
24 | (3) |
|
|
27 | (25) |
|
|
27 | (2) |
|
Using SAS to Conduct the General Linear Hypothesis |
|
|
29 | (2) |
|
The Restricted Least Squares Estimator |
|
|
31 | (2) |
|
Alternative Methods of Testing the General Linear Hypothesis |
|
|
33 | (5) |
|
Testing for Structural Breaks in Data |
|
|
38 | (3) |
|
|
41 | (4) |
|
Models with Dummy Variables |
|
|
45 | (7) |
|
|
52 | (18) |
|
|
52 | (1) |
|
|
53 | (1) |
|
|
54 | (1) |
|
Instrumental Variable Estimation |
|
|
55 | (6) |
|
|
61 | (9) |
|
Nonspherical Disturbances and Heteroscedasticity |
|
|
70 | (23) |
|
|
70 | (1) |
|
Nonspherical Disturbances |
|
|
71 | (1) |
|
Detecting Heteroscedasticity |
|
|
72 | (2) |
|
Formal Hypothesis Tests to Detect Heteroscedasticity |
|
|
74 | (6) |
|
Estimation of β Revisited |
|
|
80 | (4) |
|
Weighted Least Squares and FGLS Estimation |
|
|
84 | (3) |
|
Autoregressive Conditional Heteroscedasticity |
|
|
87 | (6) |
|
|
93 | (17) |
|
|
93 | (1) |
|
Problems Associated with OLS Estimation Under Autocorrelation |
|
|
94 | (1) |
|
Estimation Under the Assumption of Serial Correlation |
|
|
95 | (1) |
|
Detecting Autocorrelation |
|
|
96 | (5) |
|
Using SAS to Fit the AR Models |
|
|
101 | (9) |
|
|
110 | (22) |
|
|
110 | (1) |
|
|
111 | (1) |
|
The Pooled Regression Model |
|
|
112 | (1) |
|
|
113 | (10) |
|
|
123 | (9) |
|
Systems of Regression Equations |
|
|
132 | (10) |
|
|
132 | (1) |
|
Estimation Using Generalized Least Squares |
|
|
133 | (1) |
|
Special Cases of the Seemingly Unrelated Regression Model |
|
|
133 | (1) |
|
Feasible Generalized Least Squres |
|
|
134 | (8) |
|
|
142 | (11) |
|
|
142 | (1) |
|
Problems with OLS Estimation |
|
|
142 | (2) |
|
Structural and Reduced Form Equations |
|
|
144 | (1) |
|
The Problem of Identification |
|
|
145 | (2) |
|
Estimation of Simultaneous Equation Models |
|
|
147 | (4) |
|
Hausman's Specification Test |
|
|
151 | (2) |
|
|
153 | (16) |
|
|
153 | (1) |
|
|
154 | (9) |
|
|
163 | (6) |
|
|
169 | (33) |
|
|
169 | (1) |
|
Failure Times and Censoring |
|
|
169 | (1) |
|
The Survival and Hazard Functions |
|
|
170 | (8) |
|
Commonly Used Distribution Functions in Duration Analysis |
|
|
178 | (8) |
|
Regression Analysis with Duration Data |
|
|
186 | (16) |
|
|
202 | (35) |
|
Iterative FGLS Estimation Under Heteroscedasticity |
|
|
202 | (1) |
|
Maximum Likelihood Estimation Under Heteroscedasticity |
|
|
202 | (2) |
|
Harvey's Multiplicative Heteroscedasticity |
|
|
204 | (1) |
|
Groupwise Heteroscedasticity |
|
|
205 | (5) |
|
Hausman-Taylor Estimator for the Random Effects Model |
|
|
210 | (9) |
|
Robust Estimation of Covariance Matrices in Panel Data |
|
|
219 | (1) |
|
Dynamic Panel Data Models |
|
|
220 | (4) |
|
Heterogeneity and Autocorrelation in Panel Data Models |
|
|
224 | (3) |
|
Autocorrelation in Panel Data |
|
|
227 | (10) |
|
Appendix A Basic Matrix Algebra for Econometrics |
|
|
237 | (12) |
|
|
237 | (1) |
|
|
238 | (1) |
|
Basic Laws of Matrix Algebra |
|
|
239 | (1) |
|
|
240 | (1) |
|
|
240 | (1) |
|
|
241 | (1) |
|
|
241 | (1) |
|
|
242 | (1) |
|
|
243 | (1) |
|
|
244 | (1) |
|
Some Common Matrix Notations |
|
|
244 | (1) |
|
Linear Dependence and Rank |
|
|
245 | (1) |
|
Differential Calculus in Matrix Algebra |
|
|
246 | (2) |
|
Solving a System of Linear Equations in Proc IML |
|
|
248 | (1) |
|
Appendix B Basic Matrix Operations in Proc IML |
|
|
249 | (6) |
|
|
249 | (1) |
|
Creating Matrices and Vectors |
|
|
249 | (1) |
|
Elementary Matrix Operations |
|
|
250 | (1) |
|
|
251 | (1) |
|
Matrix-Generating Functions |
|
|
251 | (1) |
|
|
251 | (1) |
|
Subscript Reduction Operators |
|
|
251 | (1) |
|
The Diag and VecDiag Commands |
|
|
252 | (1) |
|
Concatenation of Matrices |
|
|
252 | (1) |
|
|
252 | (1) |
|
Calculating Summary Statistics in Proc IML |
|
|
253 | (2) |
|
Appendix C Simulating the Large Sample Properties of the OLS Estimators |
|
|
255 | (7) |
|
Appendix D Introduction to Bootstrap Estimation |
|
|
262 | (10) |
|
|
262 | (2) |
|
Calculating Standard Errors |
|
|
264 | (1) |
|
|
264 | (1) |
|
Bootstrapping in Regression Analysis |
|
|
265 | (7) |
|
Appendix E Complete Programs and Proc IML Routines |
|
|
272 | (27) |
|
|
272 | (1) |
|
|
273 | (1) |
|
|
274 | (1) |
|
|
275 | (1) |
|
|
276 | (1) |
|
|
277 | (1) |
|
|
278 | (1) |
|
|
279 | (1) |
|
|
280 | (1) |
|
|
281 | (2) |
|
|
283 | (1) |
|
|
284 | (2) |
|
|
286 | (1) |
|
|
287 | (2) |
|
|
289 | (1) |
|
|
290 | (3) |
|
|
293 | (6) |
References |
|
299 | (4) |
Index |
|
303 | |