|
|
x | |
Introduction |
|
xiii | |
|
Part I Geophysical methods |
|
|
1 | (98) |
|
|
3 | (25) |
|
|
|
|
3 | (1) |
|
1.2 Measurement principles |
|
|
4 | (4) |
|
|
8 | (1) |
|
|
8 | (2) |
|
1.5 Periglacial applications and particularities |
|
|
10 | (12) |
|
|
22 | (2) |
|
|
24 | (4) |
|
|
24 | (4) |
|
2 Electromagnetic methods |
|
|
28 | (29) |
|
|
|
|
28 | (1) |
|
|
29 | (15) |
|
2.3 Periglacial applications and particularities |
|
|
44 | (7) |
|
|
51 | (1) |
|
|
52 | (5) |
|
|
53 | (4) |
|
|
57 | (24) |
|
|
|
|
57 | (1) |
|
3.2 Measurement principles |
|
|
58 | (4) |
|
3.3 Limitations of seismic refraction based on measurement principles |
|
|
62 | (2) |
|
|
64 | (5) |
|
|
69 | (7) |
|
3.6 Periglacial applications and particularities |
|
|
76 | (1) |
|
|
77 | (4) |
|
|
78 | (3) |
|
4 Ground-penetrating radar |
|
|
81 | (18) |
|
|
|
|
81 | (1) |
|
4.2 Measurement principles |
|
|
82 | (1) |
|
|
83 | (4) |
|
|
87 | (3) |
|
4.5 Periglacial applications and particularities |
|
|
90 | (3) |
|
|
93 | (6) |
|
|
96 | (3) |
|
|
99 | (126) |
|
5 Typology of vertical electrical soundings for permafrost/ground ice investigation in the forefields of small alpine glaciers |
|
|
101 | (8) |
|
|
|
|
101 | (1) |
|
|
101 | (2) |
|
|
103 | (4) |
|
|
107 | (2) |
|
|
107 | (2) |
|
6 ERT imaging for frozen ground detection |
|
|
109 | (9) |
|
|
|
109 | (1) |
|
6.2 Data acquisition and quality control |
|
|
110 | (1) |
|
|
111 | (5) |
|
|
116 | (2) |
|
|
117 | (1) |
|
7 Electrical resistivity values of frozen soil from VES and TEM field observations and laboratory experiments |
|
|
118 | (8) |
|
|
|
118 | (1) |
|
|
118 | (1) |
|
|
119 | (5) |
|
|
124 | (2) |
|
|
124 | (2) |
|
8 Results of geophysical surveys on Kasprowy Wierch, the Tatra Mountains, Poland |
|
|
126 | (11) |
|
|
|
|
|
|
126 | (1) |
|
|
126 | (2) |
|
|
128 | (1) |
|
|
128 | (4) |
|
8.5 Analysis and interpretation of the measurements |
|
|
132 | (2) |
|
|
134 | (3) |
|
|
134 | (3) |
|
9 Reassessment of DC resistivity in rock glaciers by comparing with P-wave velocity: a case study in the Swiss Alps |
|
|
137 | (16) |
|
|
|
137 | (1) |
|
|
138 | (1) |
|
9.3 Field sites with borehole information |
|
|
138 | (1) |
|
|
139 | (8) |
|
|
147 | (3) |
|
|
150 | (3) |
|
|
150 | (3) |
|
10 Quantifying the ice content in low-altitude scree slopes using geophysical methods |
|
|
153 | (12) |
|
|
|
|
153 | (1) |
|
|
154 | (1) |
|
|
155 | (1) |
|
|
156 | (6) |
|
10.5 Discussion and conclusions |
|
|
162 | (3) |
|
|
163 | (2) |
|
11 The use of GPR in determining talus thickness and talus structure |
|
|
165 | (7) |
|
|
|
165 | (1) |
|
11.2 Study sites and data acquisition |
|
|
165 | (1) |
|
|
166 | (5) |
|
|
171 | (1) |
|
|
171 | (1) |
|
12 GPR soundings of rock glaciers on Svalbard |
|
|
172 | (6) |
|
|
|
|
|
|
|
|
172 | (1) |
|
|
172 | (1) |
|
12.3 Results and interpretation |
|
|
173 | (3) |
|
|
176 | (2) |
|
|
177 | (1) |
|
13 Arctic glaciers and ground-penetrating radar. Case study: Stagnation Glacier, Bylot Island, Canada |
|
|
178 | (13) |
|
|
|
|
178 | (1) |
|
|
179 | (2) |
|
|
181 | (1) |
|
|
182 | (1) |
|
|
183 | (4) |
|
|
187 | (1) |
|
|
188 | (3) |
|
|
188 | (3) |
|
14 Mapping of subglacial topography using GPR for determining subglacial hydraulic conditions |
|
|
191 | (16) |
|
|
|
|
191 | (3) |
|
|
194 | (1) |
|
|
194 | (5) |
|
|
199 | (4) |
|
|
203 | (2) |
|
|
205 | (2) |
|
|
205 | (2) |
|
15 Snow measurements using GPR: example from Amundsenisen, Svalbard |
|
|
207 | (10) |
|
|
|
207 | (1) |
|
15.2 GPR and GPS equipment and measurements |
|
|
208 | (2) |
|
|
210 | (2) |
|
15.4 Results and discussion |
|
|
212 | (3) |
|
|
215 | (2) |
|
|
215 | (2) |
|
16 Mapping frazil ice conditions in rivers using ground penetrating radar |
|
|
217 | (8) |
|
|
|
|
|
217 | (1) |
|
16.2 Setting and field procedures |
|
|
218 | (1) |
|
|
219 | (3) |
|
|
222 | (1) |
|
|
223 | (2) |
|
|
223 | (2) |
Appendix Tables of geophysical parameters for periglacial environments |
|
225 | (13) |
Index |
|
238 | |