Companion Website |
|
xiii | |
About the Authors |
|
xiv | |
Preface |
|
xv | |
|
1 Research And Statistics |
|
|
1 | (14) |
|
1.1 The methodology of statistical research |
|
|
2 | (1) |
|
1.2 The statistical method |
|
|
3 | (1) |
|
1.3 The logic behind statistical inference |
|
|
4 | (4) |
|
|
5 | (1) |
|
|
6 | (1) |
|
1.3.3 Why do I need significance levels if I am investigating the whole population? |
|
|
7 | (1) |
|
1.4 General laws and theories |
|
|
8 | (1) |
|
1.4.1 Objectivity and critical realism |
|
|
9 | (1) |
|
1.5 Quantitative research papers |
|
|
9 | (2) |
|
|
11 | (4) |
|
|
12 | (1) |
|
|
12 | (1) |
|
|
13 | (2) |
|
|
15 | (30) |
|
|
16 | (4) |
|
2.1.1 The Stata interface |
|
|
16 | (2) |
|
|
18 | (2) |
|
2.2 Entering and importing data into Stata |
|
|
20 | (1) |
|
|
20 | (1) |
|
|
20 | (1) |
|
|
21 | (10) |
|
|
22 | (1) |
|
|
23 | (2) |
|
2.3.3 Making changes to variables |
|
|
25 | (2) |
|
2.3.4 Generating variables |
|
|
27 | (3) |
|
|
30 | (1) |
|
2.3.6 Labelling variables |
|
|
30 | (1) |
|
2.4 Descriptive statistics and graphs |
|
|
31 | (8) |
|
2.4.1 Frequency distributions |
|
|
31 | (2) |
|
|
33 | (4) |
|
|
37 | (1) |
|
|
37 | (1) |
|
|
38 | (1) |
|
2.5 Bivariate inferential statistics |
|
|
39 | (3) |
|
|
39 | (1) |
|
|
39 | (1) |
|
2.5.3 Analysis of variance (ANOVA) |
|
|
40 | (1) |
|
|
41 | (1) |
|
|
42 | (3) |
|
|
43 | (1) |
|
|
43 | (2) |
|
3 Simple (Bivariate) Regression |
|
|
45 | (22) |
|
3.1 What is regression analysis? |
|
|
46 | (1) |
|
3.2 Simple linear regression analysis |
|
|
47 | (12) |
|
3.2.1 Ordinary least squares |
|
|
50 | (2) |
|
|
52 | (3) |
|
3.2.3 Hypothesis test for slope coefficient |
|
|
55 | (3) |
|
3.2.4 Prediction in linear regression |
|
|
58 | (1) |
|
|
59 | (4) |
|
|
63 | (4) |
|
|
64 | (1) |
|
|
64 | (1) |
|
|
64 | (3) |
|
|
67 | (18) |
|
4.1 Multiple linear regression analysis |
|
|
68 | (7) |
|
|
69 | (1) |
|
4.1.2 Goodness of fit and the F-test |
|
|
70 | (2) |
|
4.1.4 Partial slope coefficients |
|
|
72 | (1) |
|
4.1.5 Prediction in multiple regression |
|
|
73 | (1) |
|
4.1.6 Standardization and relative importance |
|
|
74 | (1) |
|
|
75 | (6) |
|
|
81 | (4) |
|
|
81 | (1) |
|
|
81 | (1) |
|
|
82 | (3) |
|
5 Dummy-Variable Regression |
|
|
85 | (24) |
|
5.1 Why dummy-variable regression? |
|
|
86 | (3) |
|
5.1.1 Creating dummy variables |
|
|
86 | (2) |
|
5.1.2 The logic behind dummy-variable regression |
|
|
88 | (1) |
|
5.2 Regression with one dummy variable |
|
|
89 | (2) |
|
|
90 | (1) |
|
5.3 Regression with one dummy variable and a covariate |
|
|
91 | (3) |
|
|
93 | (1) |
|
5.4 Regression with more than one dummy variable |
|
|
94 | (6) |
|
|
96 | (1) |
|
5.4.2 Comparing the included groups |
|
|
97 | (3) |
|
5.5 Regression with more than one dummy variable and a covariate |
|
|
100 | (3) |
|
|
101 | (2) |
|
5.6 Regression with two separate sets of dummy variables |
|
|
103 | (3) |
|
|
105 | (1) |
|
|
106 | (3) |
|
|
107 | (1) |
|
|
107 | (1) |
|
|
107 | (2) |
|
6 Interaction/Moderation Effects Using Regression |
|
|
109 | (24) |
|
6.1 Interaction/moderation effect |
|
|
110 | (2) |
|
6.2 Product-term approach |
|
|
112 | (18) |
|
6.2.1 Interaction between a continuous predictor and a continuous moderator |
|
|
114 | (4) |
|
6.2.2 Interaction between a continuous predictor and a dummy moderator |
|
|
118 | (3) |
|
6.2.3 Interaction between a dummy predictor and a dummy moderator |
|
|
121 | (3) |
|
6.2.4 Interaction between a continuous predictor and a polytomous moderator |
|
|
124 | (6) |
|
|
130 | (3) |
|
|
131 | (1) |
|
|
131 | (1) |
|
|
131 | (2) |
|
7 Linear Regression Assumptions And Diagnostics |
|
|
133 | (28) |
|
7.1 Correct specification of the model |
|
|
135 | (13) |
|
7.1.1 All X-variables relevant, and none irrelevant |
|
|
135 | (2) |
|
|
137 | (9) |
|
|
146 | (1) |
|
7.1.4 Absence of multicollinearity |
|
|
146 | (2) |
|
7.2 Assumptions about residuals |
|
|
148 | (5) |
|
7.2.1 That the error term has a conditional mean of zero |
|
|
148 | (1) |
|
|
149 | (1) |
|
7.2.3 Uncorrelated errors |
|
|
150 | (1) |
|
7.2.4 Normally distributed errors |
|
|
151 | (2) |
|
7.3 Influential observations |
|
|
153 | (4) |
|
|
153 | (1) |
|
|
154 | (1) |
|
|
155 | (2) |
|
|
157 | (4) |
|
|
158 | (1) |
|
|
158 | (1) |
|
|
158 | (3) |
|
|
161 | (32) |
|
8.1 What is logistic regression? |
|
|
163 | (4) |
|
8.1.1 Tests of significance |
|
|
166 | (1) |
|
8.2 Assumptions of logistic regression |
|
|
167 | (8) |
|
|
169 | (6) |
|
|
175 | (3) |
|
|
178 | (2) |
|
8.5 Multinomial logistic regression |
|
|
180 | (5) |
|
8.6 Ordered logistic regression |
|
|
185 | (4) |
|
|
189 | (4) |
|
|
190 | (1) |
|
|
190 | (1) |
|
|
190 | (3) |
|
|
193 | (34) |
|
|
195 | (4) |
|
9.1.1 Statistical reasons for using multilevel analysis |
|
|
198 | (1) |
|
9.2 Empty or intercept-only model |
|
|
199 | (4) |
|
|
201 | (2) |
|
9.3 Variance partition or intraclass correlation |
|
|
203 | (1) |
|
9.4 Random intercept model |
|
|
204 | (2) |
|
9.5 Level-2 explanatory variables |
|
|
206 | (2) |
|
9.5.1 How much of the dependent variable is explained? |
|
|
208 | (1) |
|
9.6 Logistic multilevel model |
|
|
208 | (2) |
|
9.7 Random coefficient (slope) model |
|
|
210 | (3) |
|
|
213 | (3) |
|
|
216 | (5) |
|
9.9.1 Cross-classified multilevel model |
|
|
219 | (2) |
|
|
221 | (2) |
|
|
223 | (4) |
|
|
223 | (1) |
|
|
223 | (1) |
|
|
224 | (3) |
|
|
227 | (42) |
|
|
228 | (3) |
|
|
231 | (5) |
|
|
236 | (4) |
|
10.4 Fixed effects (within estimator) |
|
|
240 | (10) |
|
10.4.1 Explaining fixed effects |
|
|
241 | (7) |
|
10.4.2 Summary of fixed effects |
|
|
248 | (1) |
|
10.4.3 Time-fixed effects |
|
|
249 | (1) |
|
|
250 | (2) |
|
10.6 Time-series cross-section methods |
|
|
252 | (9) |
|
10.6.1 Testing for non-stationarity |
|
|
256 | (2) |
|
|
258 | (2) |
|
|
260 | (1) |
|
10.7 Binary dependent variables |
|
|
261 | (4) |
|
|
265 | (4) |
|
|
266 | (1) |
|
|
266 | (1) |
|
|
266 | (3) |
|
11 Exploratory Factor Analysis |
|
|
269 | (24) |
|
11.1 What is factor analysis? |
|
|
270 | (2) |
|
11.1.1 What is factor analysis used for? |
|
|
272 | (1) |
|
11.2 The factor analysis process |
|
|
272 | (9) |
|
11.2.1 Extracting the factors |
|
|
273 | (3) |
|
11.2.2 Determining the number of factors |
|
|
276 | (1) |
|
11.2.3 Rotating the factors |
|
|
277 | (3) |
|
11.2.4 Refining and interpreting the factors |
|
|
280 | (1) |
|
11.3 Composite scores and reliability test |
|
|
281 | (2) |
|
|
283 | (5) |
|
|
288 | (5) |
|
|
288 | (1) |
|
|
289 | (1) |
|
|
289 | (4) |
|
12 Structural Equation Modelling And Confirmatory Factor Analysis |
|
|
293 | (32) |
|
12.1 What is structural equation modelling? |
|
|
294 | (3) |
|
12.1.1 Types of structural equation modelling |
|
|
296 | (1) |
|
12.2 Confirmatory factor analysis |
|
|
297 | (14) |
|
12.2.1 Model specification |
|
|
298 | (1) |
|
12.2.2 Model identification |
|
|
299 | (2) |
|
12.2.3 Parameter estimation |
|
|
301 | (1) |
|
|
302 | (7) |
|
12.2.5 Model modification |
|
|
309 | (2) |
|
12.3 Latent path analysis |
|
|
311 | (8) |
|
12.3.1 Specification of the LPA model |
|
|
312 | (1) |
|
|
313 | (4) |
|
|
317 | (2) |
|
|
319 | (6) |
|
|
320 | (1) |
|
|
321 | (1) |
|
|
321 | (4) |
|
|
325 | (26) |
|
13.1 Transformation of variables |
|
|
326 | (5) |
|
13.1.1 Skewness and kurtosis |
|
|
326 | (3) |
|
|
329 | (2) |
|
|
331 | (3) |
|
|
334 | (4) |
|
|
338 | (10) |
|
13.4.1 Traditional methods for handling missing data |
|
|
339 | (3) |
|
13.4.2 Multiple imputation |
|
|
342 | (6) |
|
|
348 | (3) |
|
|
348 | (1) |
|
|
348 | (1) |
|
|
349 | (2) |
Index |
|
351 | |