Muutke küpsiste eelistusi

Architecting HBase Applications [Pehme köide]

  • Formaat: Paperback / softback, 252 pages, kõrgus x laius x paksus: 248x170x13 mm, kaal: 438 g
  • Ilmumisaeg: 06-Sep-2016
  • Kirjastus: O'Reilly Media
  • ISBN-10: 1491915811
  • ISBN-13: 9781491915813
  • Pehme köide
  • Hind: 39,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Tavahind: 45,99 €
  • Säästad 15%
  • Raamatu kohalejõudmiseks kirjastusest kulub orienteeruvalt 2-4 nädalat
  • Kogus:
  • Lisa ostukorvi
  • Tasuta tarne
  • Tellimisaeg 2-4 nädalat
  • Lisa soovinimekirja
  • Formaat: Paperback / softback, 252 pages, kõrgus x laius x paksus: 248x170x13 mm, kaal: 438 g
  • Ilmumisaeg: 06-Sep-2016
  • Kirjastus: O'Reilly Media
  • ISBN-10: 1491915811
  • ISBN-13: 9781491915813

Lots of HBase books, online HBase guides, and HBase mailing lists/forums are available if you need to know how HBase works. But if you want to take a deep dive into use cases, features, and troubleshooting, Architecting HBase Applications is the right source for you.

With this book, you’ll learn a controlled set of APIs that coincide with use-case examples and easily deployed use-case models, as well as sizing/best practices to help jump start your enterprise application development and deployment.

  • Learn design patterns—and not just components—necessary for a successful HBase deployment
  • Go in depth into all the HBase shell operations and API calls required to implement documented use cases
  • Become familiar with the most common issues faced by HBase users, identify the causes, and understand the consequences
  • Learn document-specific API calls that are tricky or very important for users
  • Get use-case examples for every topic presented
Foreword xi
Preface xiii
Part I. Introduction to HBase
1 What Is HBase?
3(4)
Column-Oriented Versus Row-Oriented
5(1)
Implementation and Use Cases
5(2)
2 HBase Principles
7(18)
Table Format
7(8)
Table Layout
8(1)
Table Storage
9(6)
Internal Table Operations
15(4)
Compaction
15(2)
Splits (Auto-Sharding)
17(2)
Balancing
19(1)
Dependencies
19(1)
HBase Roles
20(5)
Master Server
21(1)
Region Server
21(1)
Thrift Server
22(1)
REST Server
22(3)
3 HBase Ecosystem
25(14)
Monitoring Tools
25(8)
Cloudera Manager
26(2)
Apache Ambari
28(4)
Hannibal
32(1)
SQL
33(2)
Apache Phoenix
33(1)
Apache Trafodion
33(1)
Splice Machine
34(1)
Honorable Mentions (Kylin, Themis, Tephra, Hive, and Impala)
34(1)
Frameworks
35(4)
OpenTSDB
35(1)
Kite
36(1)
HappyBase
37(1)
AsyncHBase
37(2)
4 HBase Sizing and Tuning Overview
39(10)
Hardware
40(1)
Storage
40(1)
Networking
41(1)
OS Tuning
42(1)
Hadoop Tuning
43(1)
HBase Tuning
44(2)
Different Workload Tuning
46(3)
5 Environment Setup
49(24)
System Requirements
50(3)
Operating System
50(1)
Virtual Machine
50(2)
Resources
52(1)
Java
53(1)
HBase Standalone Installation
53(3)
HBase in a VM
56(1)
Local Versus VM
57(2)
Local Mode
57(1)
Virtual Linux Environment
58(1)
QuickStart VM (or Equivalent)
58(1)
Troubleshooting
59(2)
IP/Name Configuration
59(1)
Access to the /tmp Folder
59(1)
Environment Variables
59(1)
Available Memory
60(1)
First Steps
61(7)
Basic Operations
61(1)
Import Code Examples
62(4)
Testing the Examples
66(2)
Pseudodistributed and Fully Distributed
68(5)
Part II. Use Cases
6 Use Case: HBase as a System of Record
73(10)
Ingest/Pre-Processing
74(1)
Processing/Serving
75(4)
User Experience
79(4)
7 Implementation of an Underlying Storage Engine
83(24)
Table Design
83(5)
Table Schema
84(1)
Table Parameters
85(2)
Implementation
87(1)
Data conversion
88(6)
Generate Test Data
88(1)
Create Avro Schema
89(1)
Implement MapReduce Transformation
89(5)
HFile Validation
94(1)
Bulk Loading
95(1)
Data Validation
96(4)
Table Size
97(1)
File Content
98(2)
Data Indexing
100(4)
Data Retrieval
104(1)
Going Further
105(2)
8 Use Case: Near Real-Time Event Processing
107(8)
Ingest/Pre-Processing
110(1)
Near Real-Time Event Processing
111(1)
Processing/Serving
112(3)
9 Implementation of Near Real-Time Event Processing
115(26)
Application Flow
117(4)
Kafka
117(1)
Flume
118(1)
HBase
118(2)
Lily
120(1)
Solr
120(1)
Implementation
121(19)
Data Generation
121(1)
Kafka
122(1)
Flume
123(7)
Serializer
130(4)
HBase
134(2)
Lily
136(2)
Solr
138(1)
Testing
139(1)
Going Further
140(1)
10 Use Case: HBase as a Master Data Management Tool
141(6)
Ingest
142(1)
Processing
143(4)
11 Implementation of HBase as a Master Data Management Tool
147(14)
MapReduce Versus Spark
147(1)
Get Spark Interacting with HBase
148(1)
Run Spark over an HBase Table
148(1)
Calling HBase from Spark
148(1)
Implementing Spark with HBase
149(11)
Spark and HBase: Puts
150(4)
Spark on HBase: Bulk Load
154(2)
Spark Over HBase
156(4)
Going Further
160(1)
12 Use Case: Document Store
161(6)
Serving
163(1)
Ingest
164(2)
Clean Up
166(1)
13 Implementation of Document Store
167(10)
MOBs
167(5)
Storage
169(1)
Usage
170(1)
Too Big
170(2)
Consistency
172(1)
Going Further
173(4)
Part III. Troubleshooting
14 Too Many Regions
177(14)
Consequences
177(1)
Causes
178(1)
Misconfiguration
178(1)
Misoperation
179(1)
Solution
179(8)
Before 0.98
179(6)
Starting with 0.98
185(2)
Prevention
187(4)
Regions Size
187(2)
Key and Table Design
189(2)
15 Too Many Column Families
191(6)
Consequences
192(1)
Memory
192(1)
Compactions
193(1)
Split
193(1)
Causes, Solution, and Prevention
193(4)
Delete a Column Family
194(1)
Merge a Column Family
194(2)
Separate a Column Family into a New Table
196(1)
16 Hotspotting
197(6)
Consequences
197(1)
Causes
198(2)
Monotonically Incrementing Keys
198(1)
Poorly Distributed Keys
198(1)
Small Reference Tables
199(1)
Applications Issues
200(1)
Meta Region Hotspotting
200(1)
Prevention and Solution
200(3)
17 Timeouts and Garbage Collection
203(10)
Consequences
203(3)
Causes
206(1)
Storage Failure
206(1)
Power-Saving Features
206(1)
Network Failure
207(1)
Solutions
207(1)
Prevention
207(6)
Reduce Heap Size
208(1)
Off-Heap BlockCache
208(1)
Using the GIGC Algorithm
209(1)
Configure Swappiness to 0 or 1
210(1)
Disable Environment-Friendly Features
211(1)
Hardware Duplication
211(2)
18 HBCK and Inconsistencies
213(10)
HBase Filesystem Layout
213(1)
Reading META
214(1)
Reading HBase on HDFS
215(2)
General HBCK Overview
217(1)
Using HBCK
218(5)
Index 223
Jean-Marc Spaggiari, an HBase contributor since 2012, works as an HBase specialist Solutions Architect for Cloudera to support Hadoop and HBase through technical support and consulting work. He has worked with some of the biggest HBase users in North America. Kevin O'Dell has been an HBase contributor since 2012 where he has been active in the community. Kevin has spoken at numerous Hadoop User Groups, Hadoop Summit, and HBaseCons. Kevin currently works as a Systems Engineer for Cloudera building Big Data applications with a specialization in HBase.