Preface |
|
xiii | |
Author |
|
xv | |
1 Introduction |
|
1 | (14) |
|
1.1 Survivability and Onions |
|
|
2 | (1) |
|
|
3 | (1) |
|
1.3 The Disposition of Armour |
|
|
4 | (2) |
|
|
6 | (5) |
|
1.4.1 Personal Protection |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
8 | (2) |
|
|
10 | (1) |
|
1.5 Early Empirical Models of Penetration |
|
|
11 | (3) |
|
|
14 | (1) |
2 An Introduction to Materials |
|
15 | (34) |
|
|
15 | (1) |
|
2.2 A Quick Introduction to the Structure of Materials |
|
|
15 | (2) |
|
2.2.1 Mechanisms of Plastic Deformation |
|
|
16 | (1) |
|
|
17 | (4) |
|
|
21 | (3) |
|
|
24 | (6) |
|
|
30 | (2) |
|
2.7 Dynamic Behaviour of Materials |
|
|
32 | (15) |
|
|
36 | (1) |
|
2.7.2 Instrumented Drop Tower Test |
|
|
37 | (1) |
|
2.7.3 Split-Hopkinson Pressure Bar Test |
|
|
37 | (1) |
|
|
38 | (7) |
|
2.7.4.1 Introductory Concepts |
|
|
39 | (1) |
|
2.7.4.2 Approximate Formula for Estimating the Yield Point |
|
|
40 | (5) |
|
2.7.5 Dynamic Extrusion Test |
|
|
45 | (1) |
|
|
45 | (2) |
|
|
47 | (2) |
3 Bullets, Blast, Jets and Fragments |
|
49 | (42) |
|
|
49 | (1) |
|
3.2 Small-Arms Ammunition |
|
|
49 | (5) |
|
|
50 | (1) |
|
|
51 | (2) |
|
3.2.3 The Effect of the Bullet's Jacket during Penetration |
|
|
53 | (1) |
|
3.3 Higher-Calibre KE Rounds |
|
|
54 | (1) |
|
|
55 | (13) |
|
|
57 | (1) |
|
3.4.2 Blast Wave Parameters |
|
|
58 | (2) |
|
|
60 | (2) |
|
3.4.4 Predicting Blast Loading on Structures |
|
|
62 | (2) |
|
|
64 | (2) |
|
3.4.6 Buried Mines and IEDs |
|
|
66 | (2) |
|
|
68 | (6) |
|
3.5.1 Penetration Prediction |
|
|
69 | (2) |
|
|
71 | (3) |
|
3.6 Explosively Formed Projectiles |
|
|
74 | (2) |
|
3.7 High-Explosive Squash Head |
|
|
76 | (1) |
|
|
77 | (13) |
|
3.8.1 Gurney Analysis to Predict Fragment Velocity |
|
|
79 | (4) |
|
3.8.2 Drag on Fragments and Other Projectiles |
|
|
83 | (4) |
|
3.8.3 Fragment Penetration |
|
|
87 | (3) |
|
|
90 | (1) |
4 Penetration Mechanics |
|
91 | (46) |
|
|
91 | (1) |
|
|
91 | (1) |
|
|
92 | (25) |
|
4.3.1 Penetration into Thick Plates |
|
|
96 | (13) |
|
4.3.1.1 Recht Penetration Formula |
|
|
97 | (5) |
|
4.3.1.2 Forrestal Penetration Formula |
|
|
102 | (7) |
|
4.3.2 Penetration of Thin Plates |
|
|
109 | (5) |
|
4.3.2.1 The Effect of Projectile Shape on Penetration |
|
|
109 | (1) |
|
4.3.2.2 Penetration of Thin Plates by Blunt-Nosed Projectiles |
|
|
110 | (2) |
|
4.3.2.3 Penetration of Thin Plates by Sharp-Nosed Projectiles |
|
|
112 | (2) |
|
4.3.3 Introducing Obliquity |
|
|
114 | (3) |
|
4.4 Hydrodynamic Penetration |
|
|
117 | (17) |
|
4.4.1 Fluid Jet Penetration Model |
|
|
119 | (5) |
|
4.4.2 Improvements on the Fluid Jet Penetration Model |
|
|
124 | (9) |
|
4.4.3 Segmented Penetrators |
|
|
133 | (1) |
|
4.5 A Brief Look at Computational Approaches |
|
|
134 | (2) |
|
|
134 | (2) |
|
|
136 | (1) |
5 Stress Waves |
|
137 | (40) |
|
|
137 | (1) |
|
5.2 Calculation of the Particle Velocity |
|
|
138 | (1) |
|
|
139 | (8) |
|
5.3.1 Elastic Wave Transmission and Reflection at an Interface |
|
|
140 | (7) |
|
|
147 | (3) |
|
5.4.1 Inelastic Wave Transmission and Reflection at an Interface |
|
|
148 | (2) |
|
|
150 | (4) |
|
5.5.1 An Ideal Shock Wave |
|
|
151 | (1) |
|
5.5.2 Are Shock Waves Relevant in Ballistic-Attack Problems? |
|
|
152 | (2) |
|
5.6 Rankine-Hugoniot Equations |
|
|
154 | (21) |
|
5.6.1 Conservation of Mass |
|
|
155 | (1) |
|
5.6.2 Conservation of Momentum |
|
|
155 | (1) |
|
5.6.3 Conservation of Energy |
|
|
156 | (3) |
|
5.6.4 A Consistent Set of Units |
|
|
159 | (1) |
|
|
159 | (4) |
|
5.6.6 Calculating the Pressure from Two Colliding Objects |
|
|
163 | (3) |
|
5.6.7 Hugoniot Elastic Limit |
|
|
166 | (1) |
|
5.6.8 Shocks in Elastic-Plastic Materials |
|
|
167 | (3) |
|
5.6.9 Evaluating the Strength of a Material behind the Shock Wave |
|
|
170 | (1) |
|
|
171 | (1) |
|
5.6.11 Spall in Shocked Materials |
|
|
172 | (3) |
|
|
175 | (2) |
6 Metallic Armour Materials and Structures |
|
177 | (30) |
|
|
177 | (1) |
|
6.2 Properties and Processing of Metallic Armour |
|
|
177 | (4) |
|
|
177 | (2) |
|
|
179 | (1) |
|
6.2.3 Welding and Structural Failure due to Blast and Ballistic Loading |
|
|
180 | (1) |
|
6.3 Metallic Armour Materials |
|
|
181 | (19) |
|
|
182 | (7) |
|
6.3.1.1 A Quick Word on the Metallurgy of Steel |
|
|
182 | (1) |
|
6.3.1.2 Rolled Homogeneous Armour |
|
|
183 | (1) |
|
6.3.1.3 High-Hardness Armour |
|
|
184 | (1) |
|
6.3.1.4 Variable Hardness Steel Armour |
|
|
185 | (2) |
|
6.3.1.5 Perforated Armour |
|
|
187 | (1) |
|
6.3.1.6 Ballistic Testing of Steel Armour |
|
|
188 | (1) |
|
6.3.2 Aluminium Alloy Armour |
|
|
189 | (6) |
|
6.3.2.1 Processing and Properties |
|
|
189 | (2) |
|
6.3.2.2 Ballistic Testing of Aluminium Armour |
|
|
191 | (3) |
|
6.3.2.3 Applications of Aluminium Armour |
|
|
194 | (1) |
|
6.3.3 Magnesium Alloy Armour |
|
|
195 | (2) |
|
6.3.3.1 Processing and Properties |
|
|
196 | (1) |
|
6.3.3.2 Ballistic Testing of Magnesium Alloys |
|
|
197 | (1) |
|
6.3.4 Titanium Alloy Armour |
|
|
197 | (3) |
|
6.3.4.1 Processing and Properties |
|
|
198 | (2) |
|
6.3.4.2 Ballistic Testing of Titanium Alloy Armour |
|
|
200 | (1) |
|
|
200 | (5) |
|
6.4.1 Sandwich Core Topologies |
|
|
201 | (11) |
|
|
201 | (2) |
|
6.4.1.2 Architectured Core Topologies |
|
|
203 | (2) |
|
|
205 | (2) |
7 Ceramic Armour |
|
207 | (36) |
|
|
207 | (1) |
|
7.2 Structure of Armour Ceramics |
|
|
208 | (1) |
|
7.3 Processing of Ceramics |
|
|
209 | (3) |
|
7.4 Properties of Ceramic |
|
|
212 | (6) |
|
7.4.1 Flexural Strength of Ceramics |
|
|
214 | (1) |
|
7.4.2 Fracture Toughness of Ceramics |
|
|
214 | (1) |
|
|
214 | (2) |
|
|
216 | (1) |
|
7.4.5 Effect of Porosity on the Properties of Ceramics |
|
|
216 | (2) |
|
7.5 Early Studies on Ceramic Armour |
|
|
218 | (1) |
|
|
219 | (1) |
|
7.7 High-Velocity Impact Studies |
|
|
220 | (2) |
|
7.8 Studies on the Subject of Dwell |
|
|
222 | (3) |
|
7.9 Shock Studies in Ceramic Materials |
|
|
225 | (1) |
|
7.10 Modelling Ceramic Impact |
|
|
226 | (6) |
|
7.10.1 Computational Modelling |
|
|
226 | (2) |
|
7.10.2 Modelling Comminution |
|
|
228 | (3) |
|
7.10.3 Analytical Formulations |
|
|
231 | (1) |
|
7.11 Current Application and Challenges |
|
|
232 | (4) |
|
7.11.1 Ceramic Material Choices |
|
|
232 | (2) |
|
7.11.2 Ceramic Armour Applications |
|
|
234 | (2) |
|
7.12 Comparing with Other Materials |
|
|
236 | (1) |
|
7.13 Improving Performance |
|
|
236 | (2) |
|
7.14 Transparent Armour Materials |
|
|
238 | (2) |
|
7.14.1 Bullet-Resistant Glass |
|
|
238 | (1) |
|
|
239 | (1) |
|
|
240 | (3) |
8 Woven Fabrics and Composite Laminates for Armour Applications |
|
243 | (28) |
|
|
243 | (1) |
|
|
243 | (2) |
|
8.2.1 Terminology and Notation |
|
|
244 | (1) |
|
8.3 Manufacturing Processes of Composite Laminates |
|
|
245 | (2) |
|
8.3.1 Compression Moulding |
|
|
246 | (1) |
|
|
246 | (1) |
|
8.3.3 Resin Transfer Moulding |
|
|
246 | (1) |
|
8.4 Fibrous Materials for Armour Applications |
|
|
247 | (19) |
|
8.4.1 General Factors That Affect Performance |
|
|
247 | (2) |
|
8.4.2 Aramid-Based Fibres for Armour Applications |
|
|
249 | (2) |
|
8.4.2.1 Kevlar Fibres and Shear-Thickening Fluids |
|
|
250 | (1) |
|
8.4.3 Glass Fibres for Armour Applications |
|
|
251 | (7) |
|
8.4.3.1 The Effect of Stitching |
|
|
252 | (1) |
|
8.4.3.2 3D Woven Structures |
|
|
253 | (1) |
|
8.4.3.3 Thickness Effects |
|
|
253 | (3) |
|
8.4.3.4 The Effect of Laminate Make-Up on Ballistic Performance |
|
|
256 | (2) |
|
8.4.4 Basalt Fibres for Armour Applications |
|
|
258 | (1) |
|
8.4.5 UHMWPE Fibres for Armour Applications |
|
|
259 | (4) |
|
8.4.5.1 Ballistic Penetration of Dyneema |
|
|
260 | (2) |
|
8.4.5.2 Shock Loading of Dyneema |
|
|
262 | (1) |
|
|
263 | (1) |
|
8.4.7 Carbon Fibre Composites |
|
|
263 | (8) |
|
8.4.7.1 Failure during Ballistic Loading |
|
|
264 | (2) |
|
|
266 | (2) |
|
8.6 A Word about Sandwich Constructions |
|
|
268 | (1) |
|
|
268 | (3) |
9 Reactive Armour Systems |
|
271 | (22) |
|
|
271 | (1) |
|
9.2 Explosive-Reactive Armour |
|
|
271 | (10) |
|
9.2.1 Historical Development |
|
|
273 | (1) |
|
9.2.2 Theoretical Considerations |
|
|
274 | (2) |
|
9.2.3 Defeating Long-Rod Penetrators |
|
|
276 | (2) |
|
9.2.4 Low Collateral Damage |
|
|
278 | (2) |
|
9.2.5 Explosive Compositions |
|
|
280 | (1) |
|
9.2.6 Testing and Performance Improvement |
|
|
280 | (1) |
|
|
281 | (1) |
|
9.3.1 The Passive-Reactive Cassette Concept |
|
|
282 | (1) |
|
9.4 Electric and Electromagnetic Developments |
|
|
282 | (1) |
|
9.5 Hard-Kill Defensive Aid Suites (DASs) |
|
|
283 | (7) |
|
9.5.1 Early DAS Systems: Drozd |
|
|
285 | (1) |
|
|
286 | (1) |
|
|
286 | (1) |
|
9.5.4 Defeating Long-Rod Penetrators |
|
|
287 | (2) |
|
|
289 | (1) |
|
9.6 Summary: What about the Future? |
|
|
290 | (3) |
10 Human Vulnerability |
|
293 | (18) |
|
|
293 | (1) |
|
10.2 Human Response to Ballistic Loading |
|
|
293 | (5) |
|
|
293 | (3) |
|
10.2.2 Penetration Mechanisms |
|
|
296 | (1) |
|
|
297 | (1) |
|
|
298 | (1) |
|
10.3 Human Response to Blast Loading |
|
|
298 | (6) |
|
|
299 | (3) |
|
|
302 | (1) |
|
|
303 | (1) |
|
|
304 | (1) |
|
10.4 Limiting Blast Mine Injury to Vehicle Occupants |
|
|
304 | (5) |
|
10.4.1 Occupant Survivability |
|
|
305 | (1) |
|
|
305 | (1) |
|
10.4.3 General Techniques for Mine Protection |
|
|
306 | (3) |
|
|
309 | (2) |
11 Blast and Ballistic Testing Techniques |
|
311 | (16) |
|
|
311 | (1) |
|
11.2 Ballistic Testing Techniques |
|
|
311 | (10) |
|
11.2.1 Depth-of-Penetration Testing |
|
|
311 | (2) |
|
11.2.2 Non-Linear Behaviour |
|
|
313 | (1) |
|
11.2.3 Ballistic-Limit Testing |
|
|
314 | (3) |
|
|
317 | (1) |
|
|
318 | (1) |
|
11.2.6 Using a Ballistic Pendulum |
|
|
319 | (1) |
|
11.2.7 The Reverse-Ballistic Test |
|
|
320 | (1) |
|
11.3 Blast and Fragmentation Testing Techniques |
|
|
321 | (5) |
|
11.3.1 Fragment Simulators |
|
|
322 | (2) |
|
11.3.2 Blast and Shock Simulators |
|
|
324 | (1) |
|
11.3.3 Blast Mine Surrogates |
|
|
325 | (1) |
|
11.3.4 Explosive Bulge Test |
|
|
326 | (1) |
|
|
326 | (1) |
Glossary |
|
327 | (10) |
References |
|
337 | (24) |
Index |
|
361 | |