Contributors |
|
ix | |
|
1 Introduction of artificial intelligence in Earth sciences |
|
|
1 | (16) |
|
|
|
1 Background and motivation |
|
|
1 | (3) |
|
2 AI evolution in Earth sciences |
|
|
4 | (2) |
|
3 Latest developments and challenges |
|
|
6 | (2) |
|
4 Short-term and long-term expectations for AI |
|
|
8 | (1) |
|
5 Future developments and how to adapt |
|
|
9 | (1) |
|
6 Practical AI: From prototype to operation |
|
|
9 | (2) |
|
7 Why do we write this book? |
|
|
11 | (1) |
|
8 Learning goals and tasks |
|
|
12 | (2) |
|
9 Assignments & open questions |
|
|
14 | (1) |
|
|
14 | (3) |
|
2 Machine learning for snow cover mapping |
|
|
17 | (24) |
|
|
|
|
|
|
17 | (1) |
|
2 Machine learning tools and model |
|
|
18 | (1) |
|
|
19 | (2) |
|
|
21 | (7) |
|
|
28 | (4) |
|
6 Model performance evaluation |
|
|
32 | (6) |
|
|
38 | (1) |
|
|
39 | (1) |
|
|
39 | (1) |
|
|
39 | (2) |
|
3 AI for sea ice forecasting |
|
|
41 | (18) |
|
|
|
|
|
41 | (1) |
|
2 Sea ice seasonal forecast |
|
|
42 | (2) |
|
3 Sea ice data exploration |
|
|
44 | (1) |
|
4 ML approaches for sea ice forecasting |
|
|
45 | (10) |
|
|
55 | (1) |
|
|
56 | (1) |
|
|
57 | (1) |
|
|
57 | (1) |
|
|
57 | (2) |
|
4 Deep learning for ocean mesoscale eddy detection |
|
|
59 | (42) |
|
|
|
|
|
59 | (1) |
|
|
60 | (1) |
|
|
61 | (14) |
|
4 Training and evaluating an eddy detection model |
|
|
75 | (19) |
|
|
94 | (3) |
|
|
97 | (1) |
|
|
97 | (1) |
|
|
98 | (1) |
|
|
99 | (1) |
|
|
99 | (2) |
|
5 Artificial intelligence for plant disease recognition |
|
|
101 | (18) |
|
Jayme Garcia Amal Barbedo |
|
|
|
101 | (2) |
|
2 Data retrieval and preparation |
|
|
103 | (2) |
|
3 Step-by-step implementation |
|
|
105 | (6) |
|
4 Experimental results and how to select a model |
|
|
111 | (2) |
|
|
113 | (2) |
|
|
115 | (1) |
|
|
115 | (1) |
|
|
115 | (1) |
|
|
116 | (3) |
|
6 Spatiotemporal attention ConvLSTM networks for predicting and physically interpreting wildfire spread |
|
|
119 | (38) |
|
|
|
|
119 | (2) |
|
|
121 | (2) |
|
|
123 | (25) |
|
|
148 | (6) |
|
|
154 | (1) |
|
|
155 | (1) |
|
|
155 | (1) |
|
|
155 | (2) |
|
7 AI for physics-inspired hydrology modeling |
|
|
157 | (48) |
|
|
1 Introduction and background |
|
|
157 | (3) |
|
2 PyTorch and autodifferentiation |
|
|
160 | (9) |
|
3 Extremely brief background on numerical optimization |
|
|
169 | (8) |
|
4 Bringing things together: Solving ODEs inside of neural networks |
|
|
177 | (9) |
|
5 Scaling up to a conceptual hydrologic model |
|
|
186 | (15) |
|
|
201 | (1) |
|
|
202 | (1) |
|
|
203 | (2) |
|
8 Theory of spatiotemporal deep analogs and their application to solar forecasting |
|
|
205 | (42) |
|
|
|
|
|
206 | (2) |
|
|
208 | (3) |
|
|
211 | (7) |
|
|
218 | (16) |
|
|
234 | (1) |
|
|
235 | (1) |
|
|
236 | (1) |
|
Appendix A Deep learning layers and operators |
|
|
236 | (2) |
|
Appendix B Verification of extended analog search with GFS |
|
|
238 | (2) |
|
Appendix C Weather analog identification under a high irradiance regime |
|
|
240 | (2) |
|
Appendix D Model attribution |
|
|
242 | (2) |
|
|
244 | (3) |
|
9 AI for improving ozone forecasting |
|
|
247 | (24) |
|
|
|
|
|
247 | (2) |
|
|
249 | (2) |
|
|
251 | (3) |
|
|
254 | (1) |
|
|
255 | (9) |
|
|
264 | (1) |
|
|
265 | (1) |
|
|
266 | (1) |
|
|
267 | (1) |
|
|
267 | (1) |
|
|
267 | (1) |
|
|
268 | (3) |
|
10 AI for monitoring power plant emissions from space |
|
|
271 | (24) |
|
|
|
|
271 | (3) |
|
|
274 | (1) |
|
|
275 | (6) |
|
|
281 | (4) |
|
|
285 | (5) |
|
6 Managing emission AI workflow in Geoweaver |
|
|
290 | (1) |
|
|
291 | (1) |
|
|
292 | (1) |
|
|
292 | (1) |
|
|
293 | (1) |
|
|
293 | (1) |
|
|
294 | (1) |
|
11 AI for shrubland identification and mapping |
|
|
295 | (22) |
|
|
|
|
|
295 | (1) |
|
|
296 | (1) |
|
|
296 | (1) |
|
|
297 | (2) |
|
|
299 | (13) |
|
|
312 | (3) |
|
|
315 | (1) |
|
|
315 | (1) |
|
|
315 | (1) |
|
|
316 | (1) |
|
12 Explainable AI for understanding ML-derived vegetation products |
|
|
317 | (20) |
|
Geetha Satya Mounika Ganji |
|
|
|
|
317 | (1) |
|
|
318 | (2) |
|
|
320 | (1) |
|
|
320 | (2) |
|
|
322 | (11) |
|
|
333 | (1) |
|
|
334 | (1) |
|
|
334 | (1) |
|
|
334 | (1) |
|
|
335 | (1) |
|
|
335 | (1) |
|
|
335 | (2) |
|
13 Satellite image classification using quantum machine learning |
|
|
337 | (20) |
|
|
|
|
|
|
337 | (3) |
|
|
340 | (2) |
|
3 Applying QML on MODIS hyperspectral images |
|
|
342 | (11) |
|
|
353 | (1) |
|
|
354 | (1) |
|
|
354 | (1) |
|
|
354 | (1) |
|
|
354 | (3) |
|
14 Provenance in earth AI |
|
|
357 | (22) |
|
|
|
|
357 | (2) |
|
2 Overview of relevant concepts in provenance, XAI, and TAI |
|
|
359 | (4) |
|
3 Need for provenance in earth AI |
|
|
363 | (2) |
|
|
365 | (7) |
|
|
372 | (2) |
|
|
374 | (1) |
|
|
374 | (1) |
|
|
374 | (1) |
|
|
375 | (1) |
|
|
375 | (4) |
|
15 AI ethics for earth sciences |
|
|
379 | (18) |
|
|
|
|
|
|
|
|
|
|
|
379 | (1) |
|
|
380 | (1) |
|
3 Addressing ethical concerns during system design |
|
|
380 | (2) |
|
4 Considerating algorithmic bias |
|
|
382 | (2) |
|
5 Designing ethically driven automated systems |
|
|
384 | (2) |
|
6 Assessing the impact of autonomous and intelligent systems on human well-being |
|
|
386 | (1) |
|
7 Developing AI literacy, skills, and readiness |
|
|
387 | (1) |
|
8 On documenting datasets for AI |
|
|
388 | (2) |
|
9 On documenting AI models |
|
|
390 | (1) |
|
10 Carbon emissions of earth AI models |
|
|
391 | (2) |
|
|
393 | (1) |
|
|
393 | (1) |
|
|
394 | (1) |
|
|
394 | (3) |
Index |
|
397 | |