Preface |
|
ix | |
|
Part I Machine Intelligence |
|
|
|
1 Artificial Intelligence |
|
|
3 | (28) |
|
|
3 | (6) |
|
|
4 | (1) |
|
|
4 | (4) |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
9 | (13) |
|
|
9 | (4) |
|
Estimation with Neural Networks |
|
|
13 | (7) |
|
Classification with Neural Networks |
|
|
20 | (2) |
|
|
22 | (7) |
|
|
23 | (3) |
|
|
26 | (2) |
|
|
28 | (1) |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
31 | (30) |
|
|
32 | (10) |
|
|
32 | (6) |
|
|
38 | (2) |
|
|
40 | (2) |
|
|
42 | (2) |
|
|
44 | (1) |
|
Paths to Superintelligence |
|
|
45 | (5) |
|
Networks and Organizations |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
47 | (1) |
|
|
48 | (1) |
|
|
49 | (1) |
|
|
50 | (1) |
|
|
50 | (4) |
|
Superintelligence and Goals |
|
|
51 | (2) |
|
Superintelligence and Control |
|
|
53 | (1) |
|
|
54 | (2) |
|
|
56 | (1) |
|
|
56 | (5) |
|
Part II Finance and Machine Learning |
|
|
|
|
61 | (38) |
|
|
62 | (4) |
|
|
62 | (1) |
|
|
63 | (3) |
|
|
66 | (6) |
|
|
66 | (3) |
|
|
69 | (3) |
|
Mean-Variance Portfolio Theory |
|
|
72 | (10) |
|
|
72 | (3) |
|
|
75 | (7) |
|
Capital Asset Pricing Model |
|
|
82 | (8) |
|
|
83 | (2) |
|
|
85 | (5) |
|
|
90 | (5) |
|
|
91 | (2) |
|
|
93 | (2) |
|
|
95 | (1) |
|
|
96 | (3) |
|
|
99 | (62) |
|
|
100 | (1) |
|
Financial Econometrics and Regression |
|
|
101 | (3) |
|
|
104 | (13) |
|
|
105 | (1) |
|
Structured Historical Data |
|
|
105 | (3) |
|
Structured Streaming Data |
|
|
108 | (2) |
|
Unstructured Historical Data |
|
|
110 | (2) |
|
Unstructured Streaming Data |
|
|
112 | (1) |
|
|
113 | (4) |
|
Normative Theories Revisited |
|
|
117 | (26) |
|
Expected Utility and Reality |
|
|
118 | (5) |
|
Mean-Variance Portfolio Theory |
|
|
123 | (7) |
|
Capital Asset Pricing Model |
|
|
130 | (4) |
|
|
134 | (9) |
|
Debunking Central Assumptions |
|
|
143 | (12) |
|
Normally Distributed Returns |
|
|
143 | (10) |
|
|
153 | (2) |
|
|
155 | (1) |
|
|
156 | (1) |
|
|
156 | (5) |
|
|
161 | (24) |
|
|
162 | (1) |
|
|
162 | (3) |
|
|
165 | (4) |
|
|
169 | (3) |
|
|
172 | (6) |
|
|
178 | (2) |
|
|
180 | (3) |
|
|
183 | (1) |
|
|
183 | (2) |
|
|
185 | (26) |
|
|
186 | (6) |
|
Market Prediction Based on Returns Data |
|
|
192 | (7) |
|
Market Prediction with More Features |
|
|
199 | (5) |
|
Market Prediction Intraday |
|
|
204 | (1) |
|
|
205 | (2) |
|
|
207 | (4) |
|
Part III Statistical Inefficiencies |
|
|
|
|
211 | (18) |
|
|
212 | (2) |
|
|
214 | (4) |
|
|
218 | (2) |
|
|
220 | (2) |
|
|
222 | (3) |
|
|
225 | (2) |
|
|
227 | (1) |
|
|
228 | (1) |
|
|
228 | (1) |
|
8 Recurrent Neural Networks |
|
|
229 | (20) |
|
|
230 | (4) |
|
|
234 | (3) |
|
|
237 | (3) |
|
|
240 | (2) |
|
|
242 | (4) |
|
|
243 | (1) |
|
|
244 | (1) |
|
|
245 | (1) |
|
|
246 | (1) |
|
|
247 | (2) |
|
|
249 | (32) |
|
|
250 | (1) |
|
|
251 | (4) |
|
|
255 | (2) |
|
|
257 | (3) |
|
|
260 | (4) |
|
|
264 | (4) |
|
|
268 | (3) |
|
|
271 | (6) |
|
|
277 | (1) |
|
|
278 | (3) |
|
Part IV Algorithmic Trading |
|
|
|
10 Vectorized Backtesting |
|
|
281 | (22) |
|
Backtesting an SMA-Based Strategy |
|
|
282 | (7) |
|
Backtesting a Daily DNN-Based Strategy |
|
|
289 | (6) |
|
Backtesting an Intraday DNN-Based Strategy |
|
|
295 | (6) |
|
|
301 | (1) |
|
|
301 | (2) |
|
|
303 | (42) |
|
|
304 | (4) |
|
|
308 | (3) |
|
|
311 | (7) |
|
|
318 | (4) |
|
Backtesting Risk Measures |
|
|
322 | (10) |
|
|
324 | (2) |
|
|
326 | (2) |
|
|
328 | (4) |
|
|
332 | (1) |
|
|
332 | (1) |
|
|
333 | (12) |
|
|
333 | (2) |
|
|
335 | (4) |
|
|
339 | (3) |
|
|
342 | (3) |
|
12 Execution and Deployment |
|
|
345 | (34) |
|
|
346 | (1) |
|
|
347 | (4) |
|
|
351 | (6) |
|
|
357 | (7) |
|
|
364 | (4) |
|
|
368 | (1) |
|
|
369 | (1) |
|
|
369 | (10) |
|
|
369 | (3) |
|
|
372 | (1) |
|
|
373 | (6) |
|
|
|
|
379 | (16) |
|
|
380 | (2) |
|
|
382 | (1) |
|
|
383 | (2) |
|
|
385 | (1) |
|
|
386 | (1) |
|
|
387 | (1) |
|
Risks, Regulation, and Oversight |
|
|
388 | (3) |
|
|
391 | (1) |
|
|
392 | (3) |
|
|
395 | (12) |
|
|
396 | (1) |
|
|
396 | (4) |
|
Paths to Financial Singularity |
|
|
400 | (1) |
|
Orthogonal Skills and Resources |
|
|
401 | (1) |
|
Scenarios Before and After |
|
|
402 | (1) |
|
|
403 | (1) |
|
|
404 | (1) |
|
|
404 | (3) |
|
|
|
A Interactive Neural Networks |
|
|
407 | (18) |
|
|
425 | (14) |
|
C Convolutional Neural Networks |
|
|
439 | (8) |
Index |
|
447 | |